Основы объектно-ориентированного программирования. Что такое ООП на примерах

Абстрактные типы данных

Понятие абстрактных типов дан­ных является ключевым в программировании. Абстракция подразумевает разделение и независимое рассмотрение ин­терфейса и реализации.

Рассмотрим пример. Все мы смотрим телевизионные про­граммы. Назовем телевизор модулем или объектом. Этот объект имеет интерфейс с пользователем, т. е. средства управ­ления (совокупность кнопок), воспроизведения изображения и звука. Чем совершеннее интерфейс, тем удобнее телевизор в использовании. Мы переключаем программы, нажимая опре­деленные кнопки, и при этом не задумываемся о физических процессах, происходящих в телевизоре. Об этом знают спе­циалисты. Когда мы выбираем телевизор, нас интересуют его цена и эксплуатационные параметры, т. е. качество изобра­жения, звука и т. п. Однако нас не интересует то, что находит­ся внутри. Другими словами, мы возвращаемся к свойствам объекта (модуля), какими являются интерфейс и реализация. Основная цель абстракции в программировании как раз и заключается в отделении интерфейса от реализации.

Вернемся к нашему примеру. Предположим, некоторый субъект уверен, что хорошо знает устройство телевизора. Он снимает крышку и начинает «усовершенствовать» его. Хотя иногда это и приводит к определенным промежуточным (локальным) успехам, окончательный результат почти всегда отрицательный. Поэтому подобные действия надо запрещать. В программировании это поддерживается механизмами за­прета доступа или скрытия внутренних компонентов. Каждо­му объекту (модулю) предоставлено право самому распоря­жаться «своим имуществом», т. е. данными функциями и опе­рациями. Игнорирование этого принципа нарушает стабиль­ность системы и часто приводит к ее полному разрушению. Принцип абстракции обязывает использовать механизмы скрытия, которые предотвращают умышленное или случай­ное изменение внутренних компонентов.

Абстракция данных предполагает определение и рассмот­рение абстрактных типовданных (АТД) или, что то же самое, новых типов данных, введенных пользователем.

Абстрактный тип данных - это совокупность данных вместе с множеством операций, которые можно выполнять над этими данными.

Понятие объектно-ориентированного программирования

По определению авторитета в области объектно-ориентированных методов разработки программ Гради Буча «объектно-ориентированное программирование (ООП) – это методология программирования, которая основана на представлении программы в виде совокупности объектов, каждый из которых является реализацией определенного класса (типа особого вида), а классы образуют иерархию на принципах наследуемости».

Объектно-ориентированная методология так же, как и структурная методология, была создана с целью дисциплинировать процесс разработки больших программных комплексов и тем самым снизить их сложность и стоимость.

Объектно-ориентированная методология преследует те же цели, что и структурная, но решает их с другой отправной точки и в большинстве случаев позволяет управлять более сложными проектами, чем структурная методология.

Как известно, одним из принципов управления сложностью проекта является декомпозиция. Гради Буч выделяет две разновидности декомпозиции: алгоритмическую (так он называет декомпозицию, поддерживаемую структурными методами) и объектно-ориентированную, отличие которых состоит, по его мнению, в следующем: «Разделение по алгоритмам концентрирует внимание на порядке происходящих событий, а разделение по объектам придает особое значение факторам, либо вызывающим действия, либо являющимся объектами приложения этих действий».

Другими словами, алгоритмическая декомпозиция учитывает в большей степени структуру взаимосвязей между частями сложной проблемы, а объектно-ориентированная декомпозиция уделяет больше внимания характеру взаимосвязей.

На практике рекомендуется применять обе разновидности декомпозиции: при создании крупных проектов целесообразно сначала применять объектно-ориентированный подход для создания общей иерархии объектов, отражающих сущность программируемой задачи, а затем использовать алгоритмическую декомпозицию на модули для упрощения разработки и сопровождения программного комплекса.

ОО-программирование является, несомненно, одним из наиболее интересных направлений для профессиональной разработки программ.

Объекты и классы

Базовыми блоками объектно-ориентированной програм­мы являются объекты и классы. Содержательно объект мож­но представить как что-то ощущаемое или воображаемое и имеющее хорошо определенное поведение. Таким образом, объект можно либо увидеть, либо потрогать, либо, по край­ней мере, знать, что он есть, например, представлен в виде информации, хранимой в памяти компьютера. Дадим определение объекта, придерживаясь мнения Гради Буча: «Объект – осязаемая сущность, которая четко проявляет свое поведение».

Объект - это часть окружающей нас реальности, т. е. он существует во времени и в пространстве (впервые понятие объекта в про­граммировании введено в языке Simula). Формально объект определить довольно трудно. Это можно сделать че­рез некоторые свойства, а именно: объект имеет состояние, поведение и может быть однозначно идентифицирован (дру­гими словами, имеет уникальное имя).

Класс - это множество объектов, имеющих общую структуру и общее поведение. Класс - описание (абстракция), которое показывает, как построить существующую во време­ни и пространстве переменную этого класса, называемую объектом. Смысл предложений «описание переменных клас­са» и «описание объектов класса» один и тот же.

Объект имеет состояние, поведение и паспорт (средство для его однозначной идентификации); структура и поведение объектов описаны в классах, переменными которых они яв­ляются.

Определим теперь понятия состояния, поведения и иденти­фикации объекта.

Состояние объекта объединяет все его поля данных (статический компонент, т.е. неизменный) и текущие значения каждо­го из этих полей (динамический компонент, т.е. обычно изменяющийся).

Поведение выражает динамику изменения состояний объ­екта и его реакцию на поступающие сообщения, т.е. как объект изменяет свои состояния и взаи­модействует с другими объектами.

Идентификация (рас­познавание) объекта - это свойство, которое позволяет от­личить объект от других объектов того же или других клас­сов. Осуществляется идентификация посредством уникального имени (паспорта), которым наделяется объект в программе, впрочем как и любая другая переменная.

Выше уже говорилось, что процедурный (а также и мо­дульный) подход позволяет строить программы, состоящие из набора процедур (подпрограмм), реализующих заданные алгоритмы. С другой стороны, объектно-ориентированный подход представляет программы в виде набора объектов, взаимодействующих между собой. Взаимодействие объектов осуществляется через сообщения. Предположим, что нашим объектом является окружность. Тогда сообщение, посланное этому объекту, может быть следующим: «нарисуй себя». Ко­гда мы говорим, что объекту передается сообщение, то на самом деле мы вызываем некоторую функцию этого объекта (компонент-функцию). Так, в приведенном выше примере мы вызовем функцию, которая будет рисовать окружность на экране дисплея.

Базовые принципы ООП

К базовым принципам объектно-ориентированного стиля программирования относятся:

  • пакетирование или инкапсуляция;
  • наследование;
  • полиморфизм;
  • передача сообщений.

Пакетирование (инкапсуляция)

предполагает соединение в одном объекте данных и функций, которые манипулируют этими данными. Доступ к некоторым данным внутри пакета может быть либо запрещен, либо ограничен.

Объект характеризуется как совокупностью всех своих свойств (например, для животных – это наличие головы, ушей, глаз и т.д.) и их текущих значений (голова – большая, уши – длинные, глаза – желтые и т.д.), так и совокупностью допустимых для этого объекта действий (умение принимать пищу, сидеть, стоять, бежать и т.д.). Указанное объединение в едином объекте как «материальных» составных частей (голова, уши, хвост, лапы), так и действий, манипулирующих этими частями (действие «бежать» быстро перемещает лапы) называется инкапсуляцией.

В рамках ООП данные называются полями объекта, а алгоритмы – объектными методами.

Инкапсуляция позволяет в максимальной степени изолировать объект от внешнего окружения. Она существенно повышает надежность разрабатываемых программ, т.к. локализованные в объекте алгоритмы обмениваются с программой сравнительно небольшими объемами данных, причем количество и тип этих данных обычно тщательно контролируется. В результате замена или модификация алгоритмов и данных, инкапсулированных в объект, как правило, не влечет за собой плохо прослеживаемых последствий для программы в целом. Другим немаловажным следствием инкапсуляции является легкость обмена объектами, переноса их из одной программы в другую.

Наследование

И структурная, и объектно-ориентированная методологии преследуют цель построения иерархического дерева взаимосвязей между объектами (подзадачами). Но если структурная иерархия строится по простому принципу разделения целого на составные части,

то при создании объектно-ориентированной иерархии принимается другой взгляд на тот же исходный объект. В объектно-ориентированной иерархии непременно отражается наследование свойств родительских (вышележащих) типов объектов дочерним (нижележащим) типам объектов.

По Гради Бучу «наследование – это такое отношение между объектами, когда один объект повторяет структуру и поведение другого».

Принцип наследования действует в жизни повсеместно и повседневно. Млекопитающие и птицы наследуют признаки живых организмов, в отличие от растений, орел и ворон наследуют общее свойство для птиц – умение летать. С другой стороны, львы, тигры, леопарды наследуют «структуру» и поведение, характерное для представителей отряда кошачьих и т.д.

Типы верхних уровней объектно-ориентированной иерархии, как правило, не имеют конкретных экземпляров объектов. Не существует, например, конкретного живого организма, который бы сам по себе назывался «млекопитающее» или «птица». Такие типы называют абстрактными. Конкретные экземпляры объектов имеют, как правило, типы самых нижних уровней ОО-иерархии: «крокодил Гена» – конкретный экземпляр объекта типа «крокодил», «кот Матроскин» – конкретный экземпляр объекта типа «кошка».

Наследование позволяет использовать библиотеки классов и развивать их (совершенствовать и модифицировать биб­лиотечные классы) в конкретной программе. Наследование позволяет создавать новые объекты, из­меняя или дополняя свойства прежних. Объект-наследник полу­чает все поля и методы предка, но может добавить собст­венные поля, добавить собственные методы или перекрыть своими методами одноименные унаследованные методы.

Принцип наследования решает проблему модификации свойств объекта и придает ООП в целом исключительную гибкость. При работе с объектами программист обычно подбирает объект, наиболее близкий по своим свойствам для решения конкретной задачи, и создает одного или нескольких потомков от него, которые «умеют» делать то, что не реализовано в родителе.

Последовательное проведение в жизнь принципа «наследуй и изменяй» хорошо согласуется с поэтапным подходом к разработке крупных программных проектов и во многом стимулирует такой подход.

Когда вы строите новый класс, наследуя его из сущест­вующего класса, можно:

  • добавить в новый класс новые компоненты-данные;
  • добавить в новый класс новые компоненты-функции;
  • заменить в новом классе наследуемые из старого класса компоненты-функции.

Полиморфизм

позволяет использовать одни и те же функ­ции для решения разных задач. Полиморфизм выражается в том, что под одним именем скрываются различные действия, со­держание которых зависит от типа объекта.

Полиморфизм – это свойство родственных объектов (т.е. объектов, имеющих одного общего родителя) решать схожие по смыслу проблемы разными способами. Например, действие «бежать» свойственно большинству животных. Однако каждое из них (лев, слон, крокодил, черепаха) выполняет это действие различным образом.

При традиционном (не объектно-ориентированном) подходе к программированию, животных перемещать будет программист, вызывая отдельную для конкретного животного и конкретного действия подпрограмму.

В рамках ООП поведенческие свойства объекта определяются набором входящих в него методов, программист только указывает, какому объекту какое из присущих ему действий требуется выполнить, и (для рассматриваемого примера) однажды описанные объекты-животные сами будут себя передвигать характерным для них способом, используя входящие в его состав методы. Изменяя алгоритм того или иного метода в потомках объекта, программист может придавать этим потомкам отсутствующие у родителя специфические свойства. Для изменения метода необходимо перекрыть его в потомке, т.е. объявить в потомке одноименный метод и реализовать в нем нужные действия. В результате в объекте-родителе и объекте-потомке будут действовать два одноименных метода, имеющих разную алгоритмическую основу и, следовательно, придающие объектам разные свойства. Это и называется полиморфизмом объектов.

Таким образом, в нашем примере с объектами-животными действие «бежать» будет называться полиморфическим действием, а многообразие форм проявления этого действия – полиморфизмом.

Описание объектного типа

Класс или объект – это структура данных, которая содержит поля и методы. Как всякая структура данных она начинается зарезервированным словом и закрывается оператором end . Формальный синтаксис не сложен: описание объектного типа получается, если в описании записи заменить слово record на слово object или class и добавить объявление функций и процедур над полями.

Type <имя типа объекта>= object
<поле>;
<поле>;
….
<метод>;
<метод>;
end ;

В ObjectPascal существует специальное зарезервированное слово class для описания объектов, заимствованное из С++.

Type <имя типа объекта>= class
<поле>;
….
<метод>;
<метод>;
end ;

ObjectPascal поддерживает обе модели описания объектов.

Компонент объекта – либо поле, либо метод. Поле содержит имя и тип данных. Метод – это процедура или функция, объявленная внутри декларации объектного типа, в том числе и особые процедуры, создающие и уничтожающие объекты (конструкторы и деструкторы). Объявление метода внутри описания объектного типа состоит только из заголовка. Это разновидность предварительного описания подпрограммы. Тело метода приводится вслед за объявлением объектного типа.

Пример . Вводится объектный тип «предок», который имеет поле данных Name (имя) и может выполнять два действия:

  • провозглашать: «Я – предок!»;
  • сообщать свое имя.

Type tPredoc = object Name: string ; {поле данных объекта}
Procedure Declaration ; {объявление методов объекта}
Procedure MyName ;
End ;

Тексты подпрограмм, реализующих методы объекта, должны приводиться в разделе описания процедур и функций. Заголовки при описании реализации метода повторяют заголовки, приведенные в описании типа, но дополняются именем объекта, которое отделяется от имени процедуры точкой. В нашем примере:

Procedure tPredoc.Declaration ; {реализация метода объекта}
begin
writeln ("Я – предок!");
end ;
Procedure tPredoc.MyName ; {реализация метода объекта}
begin
writeln("Я –", Name);
end;

Внутри описания методов на поля и методы данного типа ссылаются просто по имени. Так метод MyName использует поле Name без явного указания его принадлежности объекту так, если бы выполнялся неявный оператор with <переменная_типа_объект> do .

Под объектами понимают и переменные объектного типа – их называют экземплярами . Как всякая переменная, экземпляр имеет имя и тип: их надо объявить.

…….{объявление объектного типа и описание его методов}
var v 1: tPredoc ; {объявление экземпляра объекта}
begin
v1. Name:= "Петров Николай Иванович";
v1.Declaration;
v1.MyName
end.

Использование поля данных объекта v1 не отличается по своему синтаксису от использования полей записей. Вызов методов экземпляра объекта означает, что указанный метод вызывается с данными объекта v 1. В результате на экран будут выведены строчки

Я – предок!
Я – Петров Николай Иванович

Аналогично записям, к полям переменных объектного типа разрешается обращаться как с помощью уточненных идентификаторов, так и с помощью оператора with .

Например, в тексте программы вместо операторов

возможно использование оператора with такого вида

with v1 do
begin
Name:= "Петров Николай Иванович";
Declaration ;
MyName
End ;

Более того, применение оператора with с объектными типами, также как и для записей не только возможно, но и рекомендуется.

Иерархия типов (наследование)

Типы можно выстроить в иерархию. Объект может наследовать компонен­ты из другого объектного типа. Наследующий объект - это потомок. Объект, которому наследуют - предок. Подчеркнем, что наследование относится только к типам, но не к экземплярам объектов.

Если введен объектный тип (предок, родительский), а его надо дополнить полями или методами, то вводится новый тип, объявляется наследником (потомком, дочерним типом) первого и описываются только новые поля и методы. Потомок содержит все поля типа предка. Заметим, что поля и ме­тоды предка доступны потомку без специальных указаний. Если в описании потомка повторяются имена полей или методов предка, то новые описания переопределяют поля и методы предка.

ООП всегда начинается с базового класса. Это шаблон для базового объекта. Следующим этапом является определение нового класса, который называется производным и является расширением базового.

Производный класс может включать дополнительные методы, которые не существуют в базовом классе. Он может переопределять (redefined) методы (или даже удалять их целиком).

В производном классе не должны переопределяться все методы базового класса. Каждый новый объект наследует свойства базового класса, необходимо лишь определить те методы, которые являются новыми или были изменены. Все другие методы базового класса считаются частью и производного. Это удобно, т.к. когда метод изменяется в базовом классе, он автоматически изменяется во всех производных классах.

Процесс наследования может быть продолжен. Класс, который произведен от базового, может сам стать базовым для других производных классов. Таким образом, ОО программы создают иерархию классов.

Наиболее часто структура иерархии классов описывается в виде дерева. Вершины дерева соответствуют классам, а корню соответствует класс, который описывает что-то общее (самое общее) для всех других классов.

Наследование дочерними типами информационных полей и методов их родительских типов выполняется по следующим правилам.

Правило 1 . Информационные поля и методы родительского типа наследуются всеми его дочерними типами независимо от числа промежуточных уровней иерархии.

Правило 2 . Доступ к полям и методам родительских типов в рамках описания любых дочерних типов выполняется так, как будто-бы они описаны в самом дочернем типе.

Правило 3 . Ни в одном дочернем типе не могут быть использованы идентификаторы полей родительских типов.

Правило 4 . Дочерний тип может доопределить произвольное число собственных методов и информационных полей.

Правило 5 . Любое изменение текста в родительском методе автоматически оказывает влияние на все методы порожденных дочерних типов, которые его вызывают.

Правило 6 . В противоположность информационным полям идентификаторы методов в дочерних типах могут совпадать с именами методов в родительских типах. В этом случае говорят, что дочерний метод перекрывает (подавляет) одноименный родительский метод. В рамках дочернего типа, при указании имени такого метода, будет вызываться именно дочерний метод, а не родительский.

Продолжим рассмотрение нашего примера. В дополнение к введенному нами типу предка tPredoc можно ввести типы потомков:

tуре tSon= оbject(tPredoc) {Тип, наследующий tPredoc }
procedure Declaration; {перекрытие методов предка}
procedure Му Name(Predoc: tPredoc);
end ;

Tуре tGrandSon=object(tSon) {Тип, наследующий tSon}
procedure Declaration ; {перекрытие методов предка}
end ;

Имя типа предка приводится в скобках после слова оbject. Мы породили наследственную иерархию из трех типов: tSon («сын») наследник типу tPredoc , а тип tGrandSon (“внук”) ­- типу tSon. Тип tSon переопределяет методы Declaration и Му N а m е, но наследует поле Name . Тип tGrandSon переопределяет только метод Declaration и наследует от общего предка поле Name , а от своего непосредственного предка (типа tSon) переопределенный метод Declaration .

Давайте разберемся, что именно мы хотим изменить в родительских методах. Дело в том, что «сын» должен провозглашать несколько иначе, чем его предок, а именно сообщить "Я – отец!"

procedure tSon.Declaration ; {реализация методов объектов - потомков}
begin
writeln (" Я - отец!");
end;

А называя свое имя, “сын” должен сообщить следующие сведения:

  • Я <фамилия имя отчество >
  • Я – сын <фамилия имя отчество своего предка>

procedure tSon .Му Name (predoc: tPredoc);
begin
inherited Му Name ; {вызов метода непосредственного предка}
writeln ("Я - сын ", predoc.Name, " а ");
end;

В нашем примере потомок tSon из метода Му Name вызывает одноимен­ный метод непосредственного предка типа tPredoc . Такой вызов обес­печивается директивой inherited , после которой указан вызываемый метод непосредственного предка. Если возникает необходимость вызвать метод отдаленного предка в каком-нибудь дочернем типе на любом уровне иерархии, то это можно сделать с помощью уточненного идентификатора, т.е. указать явно имя типа родительского объекта и через точку – имя его метода:

Теперь давайте разберемся с «внуком». Метод, в котором «внук» называет свое имя, в точности такой же, как и у его непосредственного предка (типа tSon), поэтому нет необходимости этот метод переопределять, этот метод лучше автоматически наследовать и пользоваться им как своим собственным. А вот в методе Declaration нужно провозгласить "Я – внук!", поэтому метод придется переопределить.

procedure tGrandSon.Declaration;
begin
writeln (" Я - внук!");
end;

Рассмотрим пример программы, в которой определим экземпляр типа tPredoc , назовем его «дед», экземпляр типа tSon – «отец», и экземпляр типа tGrandSon – «внук». Потребуем от них, чтобы они представились.

Пример программы с испльзованием ООП

{заголовок программы}
……………….
{раздел описания типов, в том числе и объектных типов tPredoc , tSon , tGrandSon }
{Обратите внимание! Экземпляры объектных типов можно описать как типизированные константы, что мы для примера и сделали ниже}
const ded: tPredoc = (Name: "Петров Николай Иванович");
otec: tSon = (Name: "Петров Сергей Николаевич");
vnuk: tGrandSon = (Name: "Петров Олег Сергеевич");
{раздел описания процедур и функций, где обязательно должны быть написаны все объявленные в объектных типах методы}
begin
ded.Declaration ; {вызов методов общего предка}
ded.Му Name;
writeln;
otec.Declaration;
otec.MyName(ded); { вызов методов объекта otec типа tSon}
writeln;
vnuk.Declaration; { вызов методов объекта vnuk типа tGrandSon}
vnuk.MyName (otec);
end .

Наша программа выведет на экран:

Пример вывода на экран результата

Я -предок!
Я -Петров Николай Иванович

Я -отец!
Я -Петров Сергей Николаевич
Я -сын Петров Николай Ивановича

Я -внук!
Я -Петров Олег Сергеевич
Я -сын Петров Сергей Николаевича

Обратите внимание, что в заголовке процедуры tSon . MyName в качестве параметра приведен тип данных tPredoc , а при использовании этой процедуры ей передаются переменные как типа tPredoc , так и типа tSon . Это возможно, так как пре­док совместим по типу со своими потомками. Обратное несправедливо. Если мы заменим в заголовке процедуры tSon . MyName при описании параметров тип tPredoc на tSon , компилятор укажет на несовместимость типов при использовании перемен­ной ded в строке otec . MyName (ded).

Полиморфизм и виртуальные методы

Полиморфизм – это свойство родственных объектов (т.е. объектов, имеющих одного родителя) решать схожие по смыслу проблемы разными способами.

Два или более класса, которые являются производными одного и того же базового класса, называются полиморфными. Это означает, что они могут иметь общие характеристики, но так же обладать собственными свойствами.

В рамках ООП поведенческие свойства объекта определяются набором входящих в него методов. Изменяя алгоритм того или иного метода в потомках объекта, программист может придавать этим потомкам отсутствующие у родителя специфические свойства. Для изменения метода необходимо перекрыть его в потомке, т.е. объявить в потомке одноименный метод и реализовать в нем нужные действия. В результате чего в объекте-родителе и объекте-потомке будут действовать два одноименных метода, имеющих разную алгоритмическую основу и, следовательно, придающие объектам разные свойства. Это и называется полиморфизмом объектов.

В рассмотренном выше примере во всех трех объектных типах tPredoc , tSon и tGrandSon действуют одноименные методы Declaration и MyName . Но в объектном типе tSon метод MyName выполняется несколько иначе, чем у его предка. А все три одноименных метода Declaration для каждого объекта выполняются по-своему.

Методы объектов бывают статическими, виртуальными и динамическими.

Статические методы

включаются в код программы при компиляции. Это означает, что до использования программы определено, какая процедура будет вызвана в данной точке. Компилятор определяет, какого типа объект используется при данном вызове, и подставляет метод этого объекта.

Объекты разных типов могут иметь одноименные статические методы. В этом случае нужный метод определяется по типу экземпляра объекта.

Это удобно, так как одинаковые по смыслу методы разных типов объектов можно и назвать одинаково, а это упрощает понимание и задачи и программы. Статическое перекрытие – первый шаг полиморфизма. Одинаковые имена – вопрос удобства программирования, а не принцип.

Виртуальные методы

в отличие от статических, подключаются к основному коду на этапе выполнения программы. Виртуальные методы дают возможность определить тип и конкретизировать экземпляр объекта в процессе исполнения, а затем вызвать методы этого объекта.

Этот принципиально новый механизм, называемый поздним связыванием, обеспечивает полиморфизм, т.е. разный способ поведения для разных, но однородных (в смысле наследования) объектов.

Описание виртуального метода отличается от описания обычного метода добавлением после заголовка метода служебного слова virtual .

procedure Method (список параметров); virtual;

Использование виртуальных методов в иерархии типов объектов имеет определенные ограничения:

  • если метод объявлен как виртуальный, то в типе потомка его нельзя перекрыть статическим методом;
  • объекты, имеющие виртуальные методы, инициализируются специальными процедурами, которые, в сущности, также являются виртуальными и носят название constructor ;
  • списки переменных, типы функций в заголовках перекрывающих друг друга виртуальных процедур и функций должны совпадать полностью;

Обычно на конструктор возлагается работа по инициализации экземпляра объекта: присвоение полям исходных значений, первоначальный вывод на экран и т.п.

Помимо действий, заложенных в него программистом, конструктор выполняет подготовку механизма позднего связывания виртуальных методов. Это означает, что еще до вызова любого виртуального метода должен быть выполнен какой-нибудь конструктор.

Конструктор – это специальный метод, который инициализирует объект, содержащий виртуальные методы. Заголовок конструктора выглядит так:

constructor Method (список параметров);

Зарезервированное слово constructor заменяет слова procedure и virtual .

Основное и особенное назначение конструктора – установление связей с таблицей виртуальных методов (VMT) – структурой, содержащей ссылки на виртуальные методы. Таким образом, конструктор инициализирует объект установкой связи между объектом и VMT с адресами кодов виртуальных методов. При инициализации и происходит позднее связывание.

У каждого объекта своя таблица виртуальных методов VMT . Именно это и позволяет одноименному методу вызывать различные процедуры.

Упомянув о конструкторе, следует сказать и о деструкторе . Его роль противоположна: выполнить действия, завершающие работу с объектом, закрыть все файлы, очистить динамическую память, очистить экран и т.д.

Заголовок деструктора выглядит таким образом:

destructor Done ;

Основное назначение деструкторов – уничтожение VMT данного объекта. Часто деструктор не выполняет других действий и представляет собой пустую процедуру.

destructor Done ;
begin end ;

Основывается на представлении программы в виде множества объектов. Каждый объект относится к какому-либо классу, который, в свою очередь, занимает свое место в наследуемой иерархии. Использование ООП минимизирует избыточные данные, это улучшает управляемость, понимание программы.

Что такое ООП

Возникло как результат развития процедурного программирования. Основой объектно-ориентированных языков являются такие принципы, как:

  • инкапсуляция;
  • наследование;
  • полиморфизм.

Некоторые принципы, которые были изначально заложены в первые ООЯ, подверглись существенному изменению.

Примеры объектно-ориентированных языков:

  1. Pascal. С выходом Delphi 7 на официальном уровне стал называться Delphi. Основная область использования Object Pascal - написание прикладного ПО.
  2. C++ широко используется для разработки программного обеспечения, является одним из самых популярных языков. Применяется для создания ОС, прикладных программ, драйверов устройств, приложений, серверов, игр.
  3. Java - транслируется в байт-код, обрабатывается виртуальной машиной Java. Преимуществом такого способа выполнения является независимость от операционной системой и оборудования. Существующие семейства: Standard Edition, Enterprise Edition, Micro Edition, Card.
  4. JavaScript применяется в качестве языка сценариев для web-страниц. Синтаксис во многом напоминает Си и Java. Является реализацией Ecmascript. Сам Ecmascript используется в качестве основы для построения других таких как JScript, ActionScript.
  5. Objective-C построен на основе языка Си, а сам код Си понятен компилятору Objective-C.
  6. Perl - высокоуровневый интерпретируемый динамический язык общего назначения. Имеет богатые возможности для работы с текстом, изначально разработан именно для манипуляций с текстом. Сейчас используется в системном администрировании, разработке, сетевом программировании, биоинформатике и т. д.
  7. PHP. Аббревиатура переводится как препроцессор гипертекста. Применяется для разработки веб-приложений, в частности серверной части. С его помощью можно создавать gui-приложения с помощью пакетов WinBinder.
  8. Python - язык общего назначения, ориентирован на повышение производительности разработчика и читаемость кода. Был разработан проект Cython, с помощью которого осуществляется трансляция программ, написанных на Python в код на языке Си.

Абстракция

Любая книга из рода “Объектно-ориентированное программирование для чайников” выделяет один из главных принципов - абстракцию. Идея состоит в разделении деталей или характеристик реализации программы на важные и неважные. Необходима для крупных проектов, позволяет работать на разных уровнях представления системы, не уточняя детали.

Абстрактный тип данных представляется как интерфейс или структура. Позволяет не задумываться над уровнем детализации реализации. АТД не зависит от других участков кода.

Известный афоризм Дэвида Уилера гласит: Все проблемы в информатике можно решить на другом уровне абстракции.

Наследование

Объектно-ориентированные языки являются наследуемыми - это один из важнейших принципов.

Обозначает, что функциональность некоторого типа может быть повторно использована. Класс, который наследует свойства другого, называется производным, потомком или подклассом. Тот, от которого происходит наследование, называется предком, базовым или суперклассом. Связь потомок-наследник порождает особую иерархию.

Существует несколько типов наследования:

  • простое;
  • множественное.

При множественном наследовании может быть несколько детей от одного предка, когда при простом - только один. Это является основным различием между типами.

Наследование выглядит так:

function draw() {

return "just animal";

function eat() {

return "the animal is eating";

class Cow extends Animal {

function draw() {

Return "something that looks like a cow";

Видим, что class Cow унаследовал все методы от class Animal. Теперь, если выполнить Cow.eat(), получаем "the animal is eating", соответственно, метод draw() изменен. Cow.draw() вернет “something that looks like a cow”, а Animal.draw() вернет “just animal”.

Инкапсуляция

Инкапсуляция ограничивает доступ компонентов к другим, связывает данные с методами для обработки. Для инкапсуляции используется спецификатор доступа private.

Обычно понятия инкапсуляция и сокрытие отождествляются, но некоторые языки различают эти понятия. Другими словами, критичные для работы свойства защищаются, а их изменение становится невозможным.

function __construct($name) {

$this->name = $name;

function getName() {

return $this->name;

Name принимается в качестве аргументов конструктора. Когда конструктор будет использован в других частях кода, ничто не сможет изменить элемент name. Как видим, он указывается внутри, для других частей кода он недоступен.

Полиморфизм

Полиморфизм позволяет использовать одно и то же имя для решения схожих, но технически разных задач.

В примере выше находится таблица. Мы видим class CardDesk и class GraphicalObject. У обоих есть функция под названием draw(). Она выполняет разные действия, хотя имеет одно имя.

Ad hoc полиморфизм или специальный полиморфизм использует:

  • перегрузку функций, методов;
  • приведение типов.

Перегрузка подразумевает использование нескольких функций с одним именем, когда выбор подходящих происходит на этапе компиляции.

Приведение типов означает преобразование значения одного типа в значение другого типа. Существует явное преобразование - применяется функция, которая принимает один тип, а возвращает другой, неявное - выполняется компилятором или интерпретатором.

«Один интерфейс — много реализаций» Бьерн Страуструп.

Класс

Класс - это такой тип данных, который состоит из единого набора полей и методов.

Имеет внутренние и внешние интерфейсы для управления содержимым. При копировании через присваивание копируется интерфейс, но не данные. Разные виды взаимодействуют между собой посредством:

  • наследования;
  • ассоциации;
  • агрегации.

При наследовании дочерний класс наследует все свойства родителя, ассоциация подразумевает взаимодействие объектов. Когда объект одного класса входит в другой, это называется агрегацией. Но когда они еще зависят друг от друга по времени жизни, - это композиция.

Одной из главных характеристик является область видимости. Понятие по-разному определяется разными ЯП.

В Object Pascal описывается следующим образом:

ClassName = class(SuperClass)

{ использование элементов ограничивается только пределами модуля }

{ здесь указываются поля }

{ спецификатор доступа стал доступным с выходом Delphi 2007, обозначает то же, что и private }

{ элементы могут использоваться внутри ClassName или при наследовании }

{ элементы доступны всем, они отображаются в Object Inspector"e }

Здесь SuperClass - предок, от которого происходит наследование.

Для C++ создание выглядит так:

class MyClass: public Parent

MyClass(); // конструктор

~MyClass(); // деструктор

В этом примере Parent является предком, если таковой имеется. Спецификаторы private, public, protected обозначают то же самое, что в предыдущем примере на Паскале. Также мы видим конструктор, деструктор, доступные для любой части программы. У C++ все элементы по умолчанию являются private, соответственно, это можно не указывать.

Особенности реализации

В центре объектно-ориентированных языков - объект, он является частью класса. Он состоит из:

  • поля;
  • метода.

Поле данных описывает параметры объекта. Они представляют собой некое значение, которое принадлежит какому-либо классу, описывают его состояние, свойства. Являются по умолчанию закрытыми, а изменение данных происходит за счет использования различных методов.

Метод - совокупность функций, которые определяют все возможные действия, доступные для выполнения над объектом. Все объекты взаимодействуют за счет вызова методов друг друга. Могут быть внешними или внутренними, что конкретизируется модификаторами доступа.

ООП-методологии

Существуют такие методологии:

  • Компонентно-ориентированное программирование;
  • Прототипное программирование;
  • Классоориентированное программирование.

Компонентно-ориентированное программирование опирается на понятие компонента - такого составляющего программы, которое предназначено для повторного использования. Реализуется как множество конструкций с общим признаком, правилами, ограничениями. Подход используется в объектно-ориентированном языке Java, где компонентная ориентация реализуется посредством “JavaBeans”, написанных по одним правилам.

В прототипном программировании нет понятия класса - наследование производится за счет клонирования существующего прототипа. Это основа объектно-ориентированных языков javascript и других диалектов ecmascript, а также lua или lo. Главные особенности:

  • потомки не должны сохранять структурное подобие прототипа (в отношении класс - экземпляр это происходит именно так);
  • при копировании прототипа все методы наследуются один в один.

Классоориентированное программирование фокусируется на и экземпляр. Класс определяет общую структуру, поведение для экземпляров, которые их перенимают.

Объектно-ориентированные языки

Все ООЯ полностью отвечают принципам ООП - элементы представляют собой объекты, у которых есть свойства. При этом, могут быть дополнительные средства.

ООЯ обязательно содержит набор следующих элементов:

  • объявление классов с полями, методами;
  • расширение за счет наследования функций;
  • полиморфное поведение.

Кроме вышеперечисленного списка, могут быть добавлены дополнительные средства:

  • конструктор, деструктор, финализаторы;
  • свойства;
  • индексаторы;
  • модификаторы доступа.

Некоторые ООЯ отвечают всем основным элементам, другие - частично. Третьи являются гибридными, то есть совмещаются с подсистемами других парадигм. Как правило, принципы ООП могут применяться для необъектно-ориентированного языка тоже. Однако применение ООЯ еще не делает код объектно-ориентированным.

ЯП поддерживают больше, чем одну парадигму. Например, PHP или JavaScript поддерживают функциональное, процедурное, объектно-ориентированное программирование. Java работает с пятью парадигмами: объектно-ориентированной, обобщенной, процедурной, аспектно-ориентированной, конкурентной. C# считается одним из самых успешных примеров мультипарадигмальности. Он поддерживает те же подходы, что Java, к этому списку добавляется еще рефлексивная парадигма. Такой ЯП, как Oz, разработан для того, чтобы объединить все понятия, традиционно связанные с различными программными парадигмами.

Концепция объектно-ориентированного программирования (ООП) появилась более сорока лет назад, как развитие идей процедурного программирования. Идеология процедурного программирования, на мой взгляд, ничего особенного собой не представляет: все программы представлены набором процедур и функций, в то время как сами процедуры и функции – это последовательности операторов, выполняя которые модифицирует значения переменных в памяти. Основная программа в процедурном программировании также является процедурой (функцией), в теле которой могут быть вызовы других процедур и функций – подпрограмм. Суть процедурного программирования проста: данные отдельно, поведение отдельно. То (какие конструкции в него входят), я постарался собрать в отдельном разделе. Разделение кода на подпрограммы, во-первых, позволяет , а во-вторых, .

Идеология объектно-ориентированного программирования, как следует из самого названия, строится вокруг понятия объект. Объект объединяет в себе и данные и поведение. Объект – это любая сущность, с которой имеет дело программа, а именно: объекты предметной области, моделируемые программой; ресурсы операционной системы; сетевые протоколы и многое другое. По сути, объект – это та же , но дополненная процедурами и функциями, управляющими элементами этой структуры. К примеру, в процедурном языке программирования отдельно была бы создана переменная для хранения имени файла и отдельно – для хранения его дескриптора (уникальный идентификатор ресурса в операционной системе), а также ряд процедур работы с файлом: открыть файл, прочитать данные из файла и закрыть файл. Все бы эти процедуры, помимо обычных параметров и переменных для хранения результата, обязаны были бы принимать тот самый дескриптор, чтобы понять, о каком именно файле идет речь. В объектно-ориентированном языке для этих же целей был бы описан объект-файл, который также бы хранил внутри себя имя и дескриптор и предоставлял бы пользователю процедуры для открытия, чтения и закрытия себя самого (файла, ассоциированного с конкретным объектом). Разница была бы в том, что дескриптор был бы скрыт от остальной части программы, создавался бы в коде процедуры открытия файла и использовался бы неявно только самим объектом. Таким образом, пользователю объекта (программному коду внешней по отношению к объекту программы) не нужно было бы передавать дескриптор каждый раз в параметрах процедур. Объект – это комплект данных и методов работы с этими данными, часть из которых может быть скрыта от окружающего его мира, к которой и относятся детали реализации. Более подробно о терминологии объектно-ориентированного программирования будет рассказано далее.

Объектом в объектно-ориентированном языке программирования является практически все, за исключением операторов: и являются объектами, и описание ошибки является объектом и, наконец, основная программа также является объектом. Осталось понять, что такое объект с точки зрения самой программы, как он создается и используется. Вторым основополагающим понятием ООП является класс. Класс – это тот самый новый в сравнении с процедурным программированием тип данных, экземпляры которого и называются объектами. Класс, как уже было сказано, похож на составной тип данных или структуру, но дополненный процедурами и функциями (методами) для работы со своими данными. Теперь самое время описать основные термины объектно-ориентированного программирования.

Терминология объектно-ориентированного программирования

Перед тем, как перейти к описанию преимуществ, которые дает ООП разработчикам программного обеспечения в процессе , и программных продуктов необходимо познакомиться с наиболее часто встречающимися терминами в этом области.

Класс – тип данных, описывающий структуру и поведение объектов.

Объект – экземпляр класса.

Поле – элемент данных класса: переменная элементарного типа, структура или другой класс, являющийся частью класса.

Состояние объекта – набор текущих значений полей объекта.

Метод – процедура или функция, выполняющаяся в контексте объекта, для которого она вызывается. Методы могут изменять состояние текущего объекта или состояния объектов, передаваемых им в качества параметров.

Свойство – специальный вид методов, предназначенный для модификации отдельных полей объекта. Имена свойств обычно совпадают с именами соответствующих полей. Внешне работа со свойствами выглядит точно так же, как работа с полями структуры или класса, но на самом деле перед тем, как вернуть или присвоить новое значение полю может быть выполнен программный код, осуществляющий разного рода проверки, к примеру, проверку на допустимость нового значения.

Член класса – поля, методы и свойства класса.

Модификатор доступа дополнительная характеристика членов класса, определяющая, имеется ли к ним доступ из внешней программы, или же они используются исключительно в границах класса и скрыты от окружающего мира. Модификаторы доступа разделяют все элементы класса на детали реализации и открытый или частично открытый интерфейс.

Конструктор – специальный метод, выполняемый сразу же после создания экземпляра класса. Конструктор инициализирует поля объекта – приводит объект в начальное состояние. Конструкторы могут быть как с параметрами, так и без. Конструктор без параметров называют конструктором по умолчанию, который может быть только один. Имя метода конструктора, чаще всего, совпадает с именем самого класса.

Деструктор – специальный метод, вызываемый средой исполнения программы в момент, когда объект удаляется из оперативной памяти. Деструктор используется в тех случаях, когда в состав класса входят ресурсы, требующие явного освобождения (файлы, соединения с базами данных, сетевые соединения и т.п.)

Интерфейс – набор методов и свойств объекта, находящихся в открытом доступе и призванных решать определенный круг задач, к примеру, интерфейс формирования графического представления объекта на экране или интерфейс сохранения состояния объекта в файле или базе данных.

Статический член – любой элемент класса, который может быть использован без создания соответствующего объекта. К примеру, если метод класса не использует ни одного поля, а работает исключительно с переданными ему параметрами, то ничто не мешает его использовать в контексте всего класса, не создавая отдельных его экземпляров. Константы в контексте класса обычно всегда являются статическими его членами.

На этом с терминологией ООП далеко еще не все, но остальные понятия, связанные с этой парадигмой будут рассмотрены в следующем разделе.

Преимущества объектно-ориентированного программирования

Теперь поговорим о свойствах, которые приобретает программа при использовании объектно-ориентированного подхода к ее проектированию и кодированию. Как мне кажется, большинство этих свойств являются преимуществами ООП, но есть на этот счет и другие мнения…

    Инкапсуляция обозначает сокрытие деталей реализации классов средствами награждения отдельных его членов соответствующими модификаторами доступа. Таким образом, вся функциональность объекта, нацеленная на взаимодействие с другими объектами программы группируется в открытый интерфейс, а детали тщательно скрываются внутри, что избавляет основной код бизнес-логики от ненужных ему вещей. Инкапсуляция повышает надежность работы программного кода, поскольку гарантирует, что определенные данные не могут быть изменены за пределами содержащего их класса.

    Наследование . Краеугольный камень ООП. В объектно-ориентированном программировании есть возможность наследовать структуру и поведение класса от другого класса. Класс, от которого наследуют, называется базовым или суперклассом, а класс, который получается вследствие наследования – производным или просто потомком. Любой класс может выступать как в роли суперкласса, так и в роли потомка. Связи наследования классов образуют иерархию классов. Множественным наследованием называют определение производного класса сразу от нескольких суперклассов. Не все объектно-ориентированные языки программирования поддерживают множественное наследование. Наследование – это эффективный способ выделения многократно используемых фрагментов кода, но у него есть и минусы, о которых будет рассказано далее.

    Абстрагирование . Возможность объединять классы в отдельные группы, выделяя общие, значимые для них всех характеристики (общие поля и общее поведение). Собственно, абстрагирование и есть следствие наследования: базовые классы не всегда имеют свою проекцию на объекты реального мира, а создаются исключительно с целью выделить общие черты целой группы объектов. К примеру, объект мебель – это базовое понятие для стола, стула и дивана, всех их объединяет то, что это движимое имущество, часть интерьера помещений, и они могут быть выполнены для дома или офиса, а также относиться к “эконом” или “премиум” классу. В ООП есть для этого отдельное понятие абстрактный класс – класс, объекты которого создавать запрещено, но можно использовать в качестве базового класса. Наследование и абстрагирование позволяют описывать структуры данных программы и связи между ними точно так же, как выглядят соответствующие им объекты в рассматриваемой .

    Пример диаграммы классов, построенной путем абстрагирования, в ходе анализа видов существующих транспортных средств приведен на следующем рисунке. На верхних уровнях иерархии наследования находятся абстрактные классы, объединяющие транспортные средства по наиболее значимым характеристикам.


    Диаграмма классов или иерархия наследования "Транспортные средства". Белые квадраты обозначают абстрактные классы.

    Полиморфизм . Еще одно свойство, которое является следствием наследования. Дело в том, что объектно-ориентированные языки программирования позволяют работать с набором объектов из одной иерархии точно так же, как если бы все они были объектами их базового класса. Если вернуться к примеру про мебель, то можно предположить, что в контексте создания информационной системы для мебельного магазина в базовый класс для всех видов мебели разумно добавить общий для всех метод “показать характеристики”. При распечатке характеристик всех видов товара программа бы без разбору для всех объектов вызывала бы этот метод, а каждый конкретный объект уже сам бы решал, какую информацию ему предоставлять. Как это реализуется: Во-первых, в базовом классе определяют общий для всех метод с общим для всех поведением. В случае с нашим примером это будет метод, печатающий общие для любых типов мебели параметры. Во-вторых, в каждом производном классе, где это необходимо, переопределяют базовый метод (добавляют метод с тем же именем), где расширяют базовое поведение своим, например, выводят характеристики, свойственные только конкретному виду мебельной продукции. Метод в базовом классе иногда вообще не обязан содержать какой-либо код, а необходим только для того, чтобы определить имя и набор параметров – сигнатуру метода. Такие методы называют абстрактными методами, а классы, их содержащие, автоматически становятся абстрактными классами. Итак, полиморфизм – это возможность единообразного общения с объектами разных классов через определенный интерфейс. Идеология полиморфизма гласит, что для общения с объектом вам не нужно знать его тип, а нужно знать, какой интерфейс он поддерживает.

    Интерфейс . В некоторых языках программирования (C#, Java) понятие интерфейса выделено явно - это не только открытые методы и свойства самого класса. Такие языки, как правило, не поддерживают множественного наследования и компенсируют это тем, что любой объект может иметь один базовый объект и реализовывать любое количество интерфейсов. Интерфейс в их интерпретации – это подобие абстрактного класса, содержащего только описание (сигнатуру) открытых методов и свойств. Реализация интерфейса ложится на плечи каждого класса, который собирается его поддерживать. Один и тот же интерфейс могут реализовывать классы абсолютно разных иерархий, что расширяет возможности полиморфизма. К примеру, интерфейс “сохранение/восстановление информации в базе данных” могли бы реализовывать как классы иерархии “мебель”, так и классы, связанные с оформлением заказов на изготовление мебели, а при нажатии на кнопку “сохранить” программа бы прошлась по всем объектами, запросила бы у них этот интерфейс и вызвала бы соответствующий метод.

Объектно-ориентированное программирование постоянно развивается, порождая новые парадигмы, такие как аспектно-ориентированное, субъектно-ориентированное и даже агентно-ориентиванное программирование. Нужно отметит, что лавры ООП не дают покоя остальным теоретикам, и они спешат предложить свои варианты его совершенствования и расширения. Про я написал отдельную заметку, а сейчас хочу пару слов сказать про прототипное программирование, которое реализует язык на стороне клиента JavaScript. Прототипное программирование исключает понятие класса, заменяя его прототипом – образцом объекта. Таким образом, в прототипно-ориентированном языке нет понятия типа объекта, а есть понятие образец или прототип. Прототип – это экземпляр объекта, по которому создаются другие экземпляры, копируя (клонируя) его члены. В JavaScript вы не описываете поля и методы класса, а создаете сначала пустой объект, а потом добавляете ему нужные поля и методы (в JavaScript метод можно определить и добавить к объекту динамически). Точно также создаются и прототипы, на которые потом ссылаются другие объекты, как на свой прообраз. Если у объекта не находится какого-то метода или поля, которое указано в месте вызовы, то оно ищется среди членов его прототипа. То, я также отдельно описал.

Некоторые элементы современного объектно-ориентированного программирования

Время не стоит на месте, да и времени с момента появления ООП уже прошло довольно много, поэтому не стоит удивляться, что сегодня словарь по объектно-ориентированному программированию серьезно разросся. Итак, вот некоторые новые термины и понятия, связанные с ООП.

    События . Специальный вид объектов, создаваемый для оповещения одних объектов о событиях, происходящих с другими объектами. В разных языках программирования механизм событий реализуется по-разному: где-то с помощью специальных синтаксических конструкции, а где-то силами базовых средств ООП.

    Универсальный тип . Концепция универсальных типов не связана непосредственно с концепцией ООП, но она является причиной появление таких элементов, как универсальный класс, универсальный метод, универсальное событие и т.д. Универсальный тип – это тип, параметризованный другим типом (набором типов). Кем является этот тип-параметр в контексте проектирования универсального типа неизвестно, хотя есть возможность ограничить значения типов-параметров, заставив их быть производными от конкретного класса или реализовывать определенные интерфейсы. В качестве примера можно привести универсальный класс сортировки последовательности элементов, где тип элемента в последовательности заранее неизвестен. При проектировании такого класса важно указать, что тип-параметр должен поддерживать операцию сравнения. При создании объектов универсальных типов параметр указывается явно, например целочисленный или строковый тип, а сам объект начинает себя вести так, как если бы это был экземпляр класса, созданный специально для сортировки целых чисел или строк.

    Исключения . Еще один специальный вид объектов, поддерживаемый встроенным в конкретный язык программирования механизмом обработки ошибок и исключительных ситуаций. Исключения, помимо кода ошибки, содержат ее описание, возможные причины возникновения и стек вызовов методов, имевший место до момента возникновения исключения в программе.

Недостатки объектно-ориентированного программирования

Про то, что популярность объектно-ориентированного подхода к огромна я уже сказал. Про то, что тех, кто стремится расширить эту парадигму довольно много, я тоже уже отметил. Но есть еще один способ выделиться среди огромного сообщества специалистов в информационных технологиях – это заявить, что ООП себя не оправдало, что это не панацея, а, скорее, плацебо. Есть среди этих людей действительно специалисты очень высокого класса, такие как , Александр Степанов, Эдсгер Дейкстра и другие, и их мнение заслуживает внимания, но есть и те, про которых говорят, что “плохому танцору всегда что-то мешает”. Вот они, наиболее очевидные недостатки ООП, на которые указывают специалисты:

    ООП порождает огромные иерархии классов, что приводит к тому, что функциональность расползается или, как говорят, размывается по базовым и производным членам класса, и отследить логику работы того или иного метода становится сложно.

    В некоторых языках все данные являются объектами, в том числе и элементарные типы, а это не может не приводить к дополнительным расходам памяти и процессорного времени.

    Также, на скорости выполнения программ может неблагоприятно сказаться реализация полиморфизма, которая основана на механизмах позднего связывания вызова метода с конкретной его реализацией в одном из производных классов.

По мере совершенствования вычислительной техники компьютеры стали использоваться для решения все более и более сложных задач. Оказалось, что для решения сложных задач важна не только повышенная вычислительная мощность компьютеров, но и эффективность написания сложных программ. Объектно-ориентированное программирование (ООП) появилось именно как эффективный способ преодоления трудностей, возникающих при создании сложных программ.

Наиболее значимой частью ООП является особый подход к решению сложных задач программирования, называемый объектно-ориентированным анализом , а объектно-ориентированные языки программирования - просто удобные инструменты для реализации этого подхода.

История

Основатели ООП - выдающиеся норвежские ученые Кристен Нигаард (Cristen Nygaard) и Оле-Йохан Даль (Ole-Johan Dahl). Работая над моделированием судовождения, Нигаард понял, что существующие программные средства малоэффективны в создании столь сложных программ, и тогда Нигаард начал разрабатывать концепции нового программирования, позволяющего преодолеть барьеры сложности, и которое впоследствии было названо объектно-ориентированным (сам термин был придуман Аланом Кеем, автором языка Java). Вместе с Оле-Йоханом Далем Нигаард разработал основные положения ООП и практические механизмы их реализации, которые затем были воплощены в первом ООЯ Симула (Simula). Заслуги этих ученых были по достоинству оценены мировым научным сообществом, и в 2001 году Нигаард и Даль стали лауреатами премии имени Алана Тьюринга - своеобразного аналога Нобелевской премии в области computer science.

Язык Симула пользовался известностью в академических кругах, однако по ряду причин не завоевал популярности среди разработчиков коммерческого ПО. Тем не менее основные идеи и возможности ООП были очень привлекательны для программистов. Впоследствии были созданы другие ООЯ: SmallTalk (1980), C++ (1985), Eiffel (1986), Object Pascal (1986) и Delphi (1995), Oberon-2 (1991), Java (1991), Visual Basic (1991) и многие другие. Некоторые из этих языков стали промышленными стандартами в программировании.

Особенности ООП

Основная идея ООП заключается в том, что следует создавать программные структуры, поведение и взаимодействие которых имитирует поведение и взаимодействие объектов реального мира (т.е. в программе как бы создаются виртуальные аналоги реальных сущностей). Объектно-ориентированные языки программирования должны предоставлять средства для удобного и быстрого воплощения этого подхода.

В обыденной жизни люди используют (пусть даже неосознанно) различные приемы “экономии мышления”, позволяющие осмысливать и выражать сложные явления в простых понятиях. Типичными приемами “экономии мышления” являются:

· абстрагирование (отбрасывание несущественных деталей);

· обобщение (выделение общих существенных признаков у разных явлений или предметов);

· классификация (осознание связи между явлениями и степени их схожести).

Эти простые приемы помогают человеку справиться со сложностью рассматриваемых явлений. И объектно-ориентированные языки программирования также должны предоставлять подобные средства для “борьбы со сложностью” программ. Для реализации объектно-ориентированного подхода в языки программирования вводятся новые понятия:

· объекты - особые программные структуры, объединяющие данные и алгоритмы их обработки;

· инкапсуляция - сокрытие подробностей функционирования объектов;

· наследование - “сокращенный” способ создания новых классов;

· полиморфизм - возможность применения нескольких реализаций одной функции.

Объекты и классы

Объекты - особые программные единицы, состоящие из данных и алгоритмов для обработки именно этих данных . Данные, входящие в состав объекта, называются полями (атрибутами, свойствами, членами). Алгоритмы, входящие в состав объекта, называются методами (сервисами, операциями, функциями-членами). К сожалению, единой устоявшейся терминологии в ООП нет, и в разных языках используются различные термины для обозначения одних и тех же понятий.

Классы - это объектные типы данных. Подобно тому, как целые числа принадлежат какому-нибудь целочисленному типу (например, integer или byte), объекты также принадлежат какому-либо объектному типу - классу. Все объекты одного класса имеют одинаковый набор полей и одинаковый набор методов.

В некоторых языках (C++, Java) объекты называются экземплярами класса (instances).

Полезность использования классов и объектов заключается в том, что проверка логического (смыслового) соответствия между данными и функциями для обработки данных становится тривиальной задачей и может быть в основном переложена на компилятор (компьютер) - теперь он сам может определить неверное использование данных.

Инкапсуляция

Инкапсуляция (дословно - “сокрытие”) - контролируемое сокрытие информации о внутренней структуре класса. В классе могут быть поля и методы, используемые объектами исключительно для обеспечения своей работы (например, буфер в динамической памяти, файл с рабочими данными, методы для работы с этим файлом и т.п.). Изменять такие поля или вызывать методы извне объекта опасно - это может нарушить его рабочее состояние. Для обеспечения безопасности объектов подобные поля и методы можно скрыть - запретить обращение к ним извне.

С позиций “борьбы со сложностью” инкапсуляция позволяет переложить часть контроля за правильностью работы с объектами на компилятор (компьютер).

Различные ООЯ предлагают разные возможности по инкапсуляции полей и методов (от полного отсутствия и до автоматического сокрытия всех полей). В промышленных ООЯ, таких, как C++, Java, Delphi, Eiffel и т.д., предусмотрены три уровня инкапсуляции полей и методов:

· public - на обращение к публичным полям и методам объектов нет никаких ограничений;

· protected - прямое обращение к защищенным полям и методам возможно только из методов данного класса и методов дочерних классов;

· private - прямое обращение к приватным полям и методам возможно исключительно из методов данного класса.

Наследование

Наследование - создание новых классов путем дописывания только отличий от уже существующих классов, опуская описания совпадающих элементов. При наследовании новый класс называется классом-потомком (производным, дочерним, подклассом), а исходный класс называется классом-предком (базовым, родительским, суперклассом).

Наследование сокращает размер программы за счет исключения повторных описаний. Все поля и методы, объявленные в классе-предке, автоматически переносятся в класс-потомок, и их принято называть унаследованными (inherited).

При необходимости любой родительский метод можно переопределить - т.е. назначить выполнение другого алгоритма в случае вызова одноименного метода класса-потомка.

Некоторые ООЯ поддерживают множественное наследование , при котором производный класс наследует все свойства и методы одновременно от нескольких классов. К сожалению, множественное наследование таит в себе немало логических конфликтных ситуаций, а его поддержка усложняет язык программирования, и особенно - компилятор. По этой причине во многих ООЯ множественное наследование просто запрещено, но его можно сымитировать.

Совокупность всех классов-предков и классов-потомков называется иерархией классов .

Наследование классов - центральное понятие ООП, на нем прямо или косвенно базируются все остальные понятия и механизмы. Абсолютному большинству механизмов ООП, чтобы проявить свои преимущества, требуется построение иерархий классов.

Полиморфизм

Полиморфизм (дословно - “многообразие форм”) - возможность использовать одно имя для нескольких методов (или функций), имеющих сходное назначение. Другая интерпретация - один метод (функция) может иметь несколько вариантов реализации; такой метод (функция) называется полиморфным . Подобно другим механизмам ООП, полиморфизм является средством упрощения разработки сложных программ. Фактически полиморфизм отделяет понятие, что надо сделать, от того, как это надо делать.

Если провести аналогию с реальной жизнью, то полиморфизм соответствует обобщенным действиям. Например, глагол “музицировать” означает “играть на музыкальном инструменте”. Но на разных музыкальных инструментах играют по-разному. Термин один, а вариантов действия - много. Значит, “музицировать” - полиморфное действие . В ООП действию “музицировать” соответствовал бы полиморфный метод , имеющий свои реализации для каждого класса музыкальных инструментов.

В ООП есть два вида полиморфных методов - перегруженные и виртуальные .

Перегруженные методы предназначены для выполнения с данными разных типов. Они имеют одинаковые имена, но разные списки аргументов и/или тип возвращаемого значения.

Виртуальные методы предназначены для выполнения одинаковых по смыслу операций в объектах родственных, но не совпадающих классов. Виртуальные методы имеют одинаковые имена и прототипы. Их главная особенность - они всегда точно соответствуют реальному классу объекта.

Типичный пример перегруженных функций - функция SQR в Паскале. Она вычисляет квадрат числа, причем для целых аргументов результат будет также целым, а для вещественных - вещественным.

Достоинства виртуальных методов проявляются только при использовании иерархии классов. Типичная схема использования виртуальных методов такова:

· В классе-предке иерархии объявляется полиморфный метод, который описывает некое полезное действие. При этом либо он использует виртуальный метод, либо сам является виртуальным.

· В классах-потомках соответствующий виртуальный метод переопределяется - для каждого класса-потомка это полезное действие выполняется по-своему.

· При вызове для объекта, принадлежащего классу-потомку, полиморфного метода на деле используется виртуальный метод класса-потомка (а не класса-предка).

Яркий пример подобного использования виртуальных методов - система графического оконного интерфейса Delphi или Visual Basic: каждый видимый элемент графического интерфейса - кнопка, ползунок, окно и т.п. - должен быть потомком класса TControl. В классе TControl вводятся общие полиморфные методы отрисовки элементов графического интерфейса, а любой его потомок может нарисовать себя на экране своим собственным способом.

Объектно-ориентированное программирование явно не упоминается в Стандарте 2004 года, хотя в Обязательном минимуме содержания образования по информатике для учащихся профильных заведений (Уровень Б) такая тема присутствовала: Объектно-ориентированное программирование: объект, свойства объекта, операции над объектом . Там же упоминалась и объектно-ориентированная технология программирования.

Тем не менее ООП не просто вошло в практику преподавания информатики (программирования) многих школ, но и присутствует на страницах школьных учебников (Угринович Н.Д. Информатика и информационные технологии. Учебник для 10–11-х классов, 2005. М.: БИНОМ. Лаборатория Знаний). Кроме того, в пропедевтическом курсе информатики для начальной школы (рабочие тетради авторского коллектива под руководством А.Горячева. 1–4-е классы) также вводятся понятия объекта и его свойств .

Технология (парадигма) ООП требует не столько освоения современной техники программирования, сколько умения разрабатывать объектную модель решаемой задачи. Для этого требуется хорошо знать базовые принципы ООП и программирования вообще, однако знание какого-либо ООЯ не является обязательным - об этом неоднократно писали основоположники и теоретики ООП. Так, Гради Буч в своей книге “Объектно-ориентированное проектирование и анализ” высказывает следующую максиму: “Писать программы в объектно-ориентированном стиле можно в любом (не объектно-ориентированном) языке программирования”. Для построения алгоритма по технологии ООП требуется сформировать список объектов, с которыми работает алгоритм, продумать свойства каждого объекта и реализовать алгоритм как взаимодействие описанных объектов.

Как уже было сказано в статье, такой подход упрощает решение сложных задач, но в рамках школы (с учетом ограниченного числа часов) трудно придумать содержательные учебные задачи, которые бы не надуманно требовали использования технологии ООП в полной мере.

Фактически же ООП в школе рассматривается лишь как неотъемлемая часть визуального и компонентного программирования в современных профессиональных системах программирования, а в качестве объектов используются готовые объектные библиотеки различного уровня - это и библиотеки для построения графического интерфейса Windows-приложений, и многоцелевые универсальные библиотеки типов данных (например, STL в С++). Для примитивного использования этих библиотек достаточно знать и уметь применять несколько простейших правил синтаксиса языка программирования. Однако такие “знания” никоим образом не приближают учащихся ни к профессиональному овладению языком программирования, ни даже к пониманию ООП. Но, видимо, ничего страшного в этом нет. Школьная информатика и в профильной школе не ставит своей целью подготовку профессиональных программистов. Преподавание ООП - это специальная тема, даже на соответствующих специальностях вузов ее часто не изучают в достаточном объеме.

Не отрицая полностью предложение некоторых преподавателей информатики поставить объектно-ориентированный подход во главу угла изучения программирования, в том числе в школе, отметим, что ООП невозможно без таких базовых понятий, как программа, исполнитель, переменная, условие, цикл и т.д. Концепция ООП также включает в себя классическое процедурное программирование (см. “Подпрограммы ”), как механика Эйнштейна - механику Ньютона: достаточно представить себе процедурную программу как единственный объект с опущенным для простоты именем. Поэтому в первую очередь задача курса программирования в школе - научить базовым вещам. И лишь при возможности работы с современными визуальными средами программирования (Delphi, Visual Basic, Visual C++
и т.п.) познакомить с понятием объектов и их использованием в основном с помощью методики обучения программированию “по образцу”.

(ООП) организует данные и алгоритмы, обрабатываемые программой. При этом программист создает формы данных и алгоритмы, соответствующие основным характеристикам решаемой проблемы. Модели данных и алгоритмы, их обрабатывающие, называются классами , а объекты — это конкретные их представители, используемые в программе.

Из общих объектов создаются другие, более специализированные. Механизм создания таких подобъектов называется наследованием . В итоге данные программы представляют из себя объектную модель — дерево объектов, начиная с самого верхнего наиболее абстрактного и общего объекта.

ООП сочетает лучшие принципы структурного программирования с новыми мощными концепциями, базовые из которых называются инкапсуляцией , полиморфизмом и наследованием.

Примером объектно-ориентированных языков являются: Object Pascal , C++, Java .

ООП позволяет оптимально организовывать программы, разбивая проблему на составные части, и работая с каждой по отдельности.

Объектно-ориентированное программирование — это развитие технологии структурного программирования, однако оно имеет свои характерные черты. Основной единицей в объектно-ориентированном программировании выступает объект, который заключает в себе, инкапсулирует как описывающие его данные (свойства), так и средства обработки этих данных (методы). В системах ООП обычно используется графический интерфейс, который позволяет визуализировать процесс программирования. Появляется возможность создавать объекты, задавать им свойства и поведение с помощью мыши.

Объект - это комбинация данных и кода. Другими словами, объект, называемый ещё представителем (какого-нибудь класса), - это порция данных, значение которых определяют его текущее состояние, и набор подпрограмм, называемых методами , оперирующих с этими данными и определяющими поведение объекта, т.е. его реакцию на внешние воздействия.

Объект состоит из следующих трех частей:

Имя объекта;

Состояние (переменные состояния);

Методы (операции).

Каждый объект является представителем (экземпляром) определенного класса . Во время выполнения программы объекты взаимодействуют друг с другом, вызывая методы, которые являются подпрограммами, характерными для определённого класса.

Класс (class) - это группа данных и методов (функций) для работы с этими данными. Это шаблон. Объекты с одинаковыми свойствами, то есть с одинаковыми наборами переменных состояния и методов, образуют класс. Объект (object) - это конкретная реализация, экземпляр класса. В программировании отношения объекта и класса можно сравнить с описанием переменной, где сама переменная (объект) является экземпляром какого-либо типа данных (класса).


Объектно-ориентированное программирование сводится к созданию некоторого количества классов, описанию связей между этими классами и их свойств, и дальнейшей реализации полученных классов.

Теоретический подход. Класс — это один из вариантов описания сущности, которая в теории программирования именуется абстрактным типом данных. Класс определяет скрытую внутреннюю структуру некоторого значения, а также набор операций, применимых к данному значению.

Практический подход. В современных объектно-ориентированных языках программирования (php, Java, C++, Oberon, Python, Ruby, Smalltalk, Object Pascal) создание класса сводится к написанию некоторой структуры, содержащей набор полей и методов. Практически класс может пониматься как некий шаблон, по которому создаются объекты — экземпляры данного класса. Экземпляры одного класса созданы по одному шаблону, поэтому имеют один и тот же набор полей и методов.

Отношения между классами:

Наследование (Генерализация) — объекты дочернего класса наследуют все свойства родительского класса.

Ассоциация — объекты классов вступают во взаимодействие между собой.

Агрегация — объекты одного класса входят в объекты другого.

Композиция — объекты одного класса входят в объекты другого и зависят друг от друга по времени жизни.

Класс-Метакласс — отношение, при котором экземплярами одного класса являются другие классы.

Виды классов:

Базовый (родительский) класс;

Производный класс (наследник, потомок);

Абстрактный класс;

Виртуальный класс;

Интерфейс.

Класс - это структурный тип данных, который включает описание полей данных, а также процедур и функций, работающих с этими полями данных. Применительно к классам такие процедуры и функции получили название методов .

Методы - инкапсулированные в классе процедуры и функции, то есть способы работы с данными.

В основу классов и объектно-ориентированного программирования положены три принципа - инкапсуляция , наследование и полиморфизм .

Инкапсуляция (сокрытие) — свойство языка программирования, позволяющее объединить данные и код в объект и скрыть реализацию объекта от пользователя. При этом пользователю предоставляется только спецификация (интерфейс) объекта. Пользователь может взаимодействовать с объектом только через этот интерфейс.

Чаще всего инкапсуляция выполняется посредством скрытия информации, то есть маскировкой всех внутренних деталей, не влияющих на внешнее поведение. Обычно скрываются и внутренняя структура объекта и реализация его методов.

Цели инкапсуляции:

§ предельная локализация изменений при необходимости таких изменений,

§ прогнозируемость изменений (какие изменения в коде надо сделать для заданного изменения функциональности) и прогнозируемость последствий изменений.

Инкапсуляция - это процесс отделения друг от друга элементов объекта, определяющих его устройство и поведение. Часто инкапсуляция может быть достигнута простейшими организационными мерами: знание того, что «вот так-то делать нельзя» иногда является самым эффективным средством инкапсуляции!

Инкапсуляция - комбинирование записей с процедурами и функциями, манипулирующими полями этих записей, формирует новый тип данных - объект.

Инкапсуляция - изолирование составляющих класса (полей, методов и свойств) от остальных частей программы.

Суть инкапсуляции : Переменные состояния объекта скрыты от внешнего мира. Изменение состояния объекта (его переменных) возможно ТОЛЬКО с помощью его методов (операций). Почему это так важно? Этот принцип позволяет защитить переменные состояния объекта от неправильного их использования.

Применение этого метода ведет к снижению эффективности доступа к элементам объекта. Это обусловлено необходимостью вызова методов для изменения внутренних элементов (переменных) объекта. Однако, при современном уровне развития вычислительной техники, эти потери в эффективности не играют существенной роли.

Наследование — один из четырёх важнейших механизмов объектно-ориен-ти-ро-ванного программирования (наряду с инкапсуляцией, полиморфизмом и абстракцией), позволяющий описать новый класс на основе уже существующего (родительского), при этом свойства и функциональность родительского класса заимствуются новым классом.

Наследование - это процесс, посредством которого, один объект может наследовать свойства другого объекта и добавлять к ним черты, характерные только для него. Смысл и универсальность наследования заключается в том, что не надо каждый раз заново (с нуля) описывать новый объект, а можно указать родителя (базовый класс) и описать отличительные особенности нового класса. В результате, новый объект будет обладать всеми свойствами родительского класса плюс своими собственными отличительными особенностями.

Наследование - представляет собой возможность построения иерархии объек-тов с использованием наследования их характеристик.

Наследование . Наследование - это такое свойство объекта, которое позволяет ему использовать поля и методы объекта родителя, без описания их в своей структуре.

Наследование - возможность создания новых классов на базе имеющихся с возможностью использования их составляющих. Объект, принадлежащий классу-потомку, может использовать поля, свойства и методы класса-родителя и новые составляющие своего класса.

Если в классе-потомке описан новый метод, одноименный с методом класса-родителя, то «говорят», что в потомке «перекрыт» метод родителя. Другими словами, класс-наследник реализует спецификацию уже существующего класса (базовый класс). Это позволяет обращаться с объектами класса-наследника точно так же, как с объектами базового класса. При создании иерархии классов некоторые свойства объектов, сохраняя названия, изменяются по сути.

Для реализации таких иерархий в языке программирования предусмотрен полиморфизм. Слово полиморфизм имеет греческое происхождение и переводится как «имеющий много форм».

Полиморфизм . Присваивание действию одного имени, которое затем совместно используется вниз и вверх по иерархии объектов, причем каждый объект иерархии выполняет это действие способом, именно ему подходящим.

Полиморфизм - это свойство, которое позволяет одно и тоже имя использовать для решения нескольких технически разных задач.

В терминах ООП можно сказать, что все типы интерфейсных кнопок имеют способность изображения самих себя на экране. Однако способ (процедура) является различным для каждого типа кнопки. Простая кнопка рисуется на экране с помощью процедуры «вывод изображения простой кнопки», кнопка-переключатель рисуется на экране с помощью процедуры «вывод изображения кнопки-переключателя» и т.д.

Таким образом, существует единственное для всего перечня интерфейсных кнопок действие (вывод изображения кнопки на экран), которое реализуется специфическим для каждой кнопки способом. Это и является проявлением полиморфизма.

Полиморфизм - способность классов решать похожие задачи разными способами. При перекрытии метода родителя в потомке реализуется новый алгоритм решения задачи. Получается, что в объекте-родителе и объекте-потомке действуют два одноименных метода, имеющих разную алгоритмическую основу.

Полиморфизм - это способ действия с набором объектов одного и того же предка за один шаг, без детализации операций с каждым конкретным объектом. Он является также основанием для расширяемости объектно-ориентированных программ, поскольку он предоставляет способ старым программам воспринимать новые типы данных, которые не были определены во время написания программы.

В общем смысле, концепцией полиморфизма является идея «один интерфейс, множество методов». Это означает, что можно создать общий интерфейс для группы близких по смыслу действий.

Преимуществом полиморфизма является то, что он помогает снижать сложность программ, разрешая использование одного интерфейса для единого класса действий. Выбор конкретного действия, в зависимости от ситуации, возлагается на компилятор .

Применительно к ООП, целью полиморфизма, является использование одного имени для задания общих для класса действий. На практике это означает способность объектов выбирать внутреннюю процедуру (метод) исходя из типа данных, принятых в сообщении.

Механизм работы ООП в таких случаях можно описать примерно так: при вызове того или иного метода класса сначала ищется метод у самого класса. Если метод найден, то он выполняется и поиск этого метода на этом завершается. Если же метод не найден, то обращаемся к родительскому классу и ищем вызванный метод у него. Если найден - поступаем как при нахождении метода в самом классе. А если нет - продолжаем дальнейший поиск вверх по иерархическому дереву. Вплоть до корня (верхнего класса) иерархии.

mob_info