Повний огляд плати заряду li-ion акумуляторів – електроніка – огляди – якісні огляди товарів з китаю. Контролер заряду Li-ion акумулятора Схема контролера заряду li ion

Оцінка характеристик того чи іншого зарядного пристрою важко без розуміння того, як власне повинен протікати зразковий заряд li-ion акумулятора. Тому перш ніж перейти безпосередньо до схем, давайте трохи згадаємо теорію.

Якими бувають літієві акумулятори

Залежно від того, з якого матеріалу виготовлений позитивний електрод літієвого акумулятора, існує кілька різновидів:

  • з катодом із кобальтату літію;
  • з катодом на основі літованого фосфату заліза;
  • на основі нікель-кобальт-алюмінію;
  • на основі нікель-кобальт-марганцю.

Усі ці акумулятори мають свої особливості, але оскільки широкого споживача ці нюанси немає принципового значення, у цій статті вони не розглядатимуться.

Також всі li-ion акумулятори виробляють у різних типорозмірах та форм-факторах. Вони можуть бути як у корпусному виконанні (наприклад, популярні сьогодні 18650), так і в ламінованому або призматичному виконанні (гель-полімерні акумулятори). Останні є герметично запаяні пакети з особливої ​​плівки, в яких знаходяться електроди і електродна маса.

Найбільш поширені типорозміри li-ion акумуляторів наведені в таблиці нижче (всі вони мають номінальну напругу 3.7 вольта):

Позначення Типорозмір Подібний типорозмір
XXYY0,
де XX- Вказівка ​​діаметра в мм,
YY- значення довжини в мм,
0 - відбиває виконання у вигляді циліндра
10180 2/5 AAA
10220 1/2 AAA (Ø відповідає ААА, але на половину довжини)
10280
10430 ААА
10440 ААА
14250 1/2 AA
14270 Ø АА, довжина CR2
14430 Ø 14 мм (як у АА), але довжина менша
14500 АА
14670
15266, 15270 CR2
16340 CR123
17500 150S/300S
17670 2xCR123 (або 168S/600S)
18350
18490
18500 2xCR123 (або 150A/300P)
18650 2xCR123 (або 168A/600P)
18700
22650
25500
26500 З
26650
32650
33600 D
42120

Внутрішні електрохімічні процеси протікають однаково і не залежать від форм-фактора та виконання АКБ, тому все, сказане нижче, однаково відноситься до всіх літієвих акумуляторів.

Як правильно заряджати літій-іонні акумулятори

Найбільш правильним способом заряду літієвих акумуляторів є заряд у два етапи. Саме цей спосіб використовує компанія Sony у всіх своїх зарядниках. Незважаючи на більш складний контролер заряду, це забезпечує повніший заряд li-ion акумуляторів, не знижуючи термін їхньої служби.

Тут йдеться про двоетапний профіль заряду літієвих акумуляторів, скорочено іменованим CC/CV (constant current, constant voltage). Є ще варіанти з іпульсним та ступінчастим струмами, але в цій статті вони не розглядаються. Докладніше про зарядку імпульсним струмом можна прочитати.

Отже, розглянемо обидва етапи заряду докладніше.

1. На першому етапіповинен забезпечуватись постійний струм заряду. Розмір струму становить 0.2-0.5С. Для прискореного заряду допускається збільшення струму до 0.5-1.0С (де - це ємність акумулятора).

Наприклад, для акумулятора ємністю 3000 мА/год, номінальний струм заряду першому етапі дорівнює 600-1500 мА, а струм прискореного заряду може лежати не більше 1.5-3А.

Для забезпечення постійного зарядного струму заданої величини схема зарядного пристрою (ЗП) повинна вміти піднімати напругу на клемах акумулятора. На першому етапі ЗУ працює як класичний стабілізатор струму.

Важливо:якщо планується заряд акумуляторів із вбудованою платою захисту (PCB), то при конструюванні схеми ЗУ необхідно переконатися, що напруга холостого ходу схеми ніколи не зможе перевищити 6-7 вольт. А якщо ні, то плата захисту може вийти з ладу.

У момент, коли напруга на акумуляторі підніметься до значення 4.2 вольта, акумулятор набере приблизно 70-80% своєї ємності (конкретне значення ємності залежить від струму заряду: при прискореному заряді трохи менше, при номінальному - трохи більше). Цей момент є закінченням першого етапу заряду і є сигналом для переходу до другого (і останнього) етапу.

2. Другий етап заряду- це заряд акумулятора постійною напругою, але струмом, що поступово знижується (падаючим).

На цьому етапі ЗП підтримує на акумуляторі напругу 4.15-4.25 вольта та контролює значення струму.

У міру набору ємності зарядний струм буде знижуватися. Як його значення зменшиться до 0.05-0.01С, процес заряду вважається закінченим.

Важливим нюансом роботи правильного зарядного пристрою є повне відключення від акумулятора після закінчення зарядки. Це пов'язано з тим, що для літієвих акумуляторів є вкрай небажаним їхнє тривале перебування під підвищеною напругою, що зазвичай забезпечує ЗП (тобто 4.18-4.24 вольта). Це призводить до прискореної деградації хімічного складу акумулятора і, як наслідок, зниження його ємності. Під тривалим перебуванням мається на увазі десятки годин і більше.

За час другого етапу заряду акумулятор встигає набрати ще приблизно 0.1-0.15 своєї ємності. Загальний заряд акумулятора у такий спосіб досягає 90-95%, що є відмінним показником.

Ми розглянули два основні етапи заряду. Однак, висвітлення питання заряджання літієвих акумуляторів було б неповним, якби не було згадано ще один етап заряду - т.зв. передзаряд.

Попередній етап заряду (передзаряд)- цей етап використовується лише для глибоко розряджених акумуляторів (нижче 2.5 В) для виведення їх на нормальний експлуатаційний режим.

На цьому етапі заряд забезпечується постійним струмом зниженої величини доти, доки напруга на акумуляторі не досягне значення 2.8 Ст.

Попередній етап необхідний для запобігання спучування та розгерметизації (або навіть вибуху з займанням) пошкоджених акумуляторів, що мають, наприклад, внутрішнє коротке замикання між електродами. Якщо через такий акумулятор відразу пропустити великий струм заряду, це неминуче призведе до його розігріву, а як пощастить.

Ще одна користь передзаряду - це попередній прогрів акумулятора, що актуально при заряді при низьких температурах навколишнього середовища (у приміщенні, що не опалюється, в холодну пору року).

Інтелектуальна зарядка повинна вміти контролювати напругу на акумуляторі під час попереднього етапу заряду і, якщо напруга тривалий час не піднімається, робити висновок про несправність акумулятора.

Усі етапи заряду літій-іонного акумулятора (включаючи етап передзаряду) схематично зображені на цьому графіку:

Перевищення номінальної зарядної напруги на 0,15В може скоротити термін служби акумулятора вдвічі. Зниження напруги заряду на 0,1 вольт зменшує ємність зарядженої батареї приблизно на 10%, але значно продовжує термін служби. Напруга повністю зарядженого акумулятора після вилучення його із зарядного пристрою становить 4.1-4.15 вольта.

Резюмую сказане вище, позначимо основні тези:

1. Яким струмом заряджати акумулятор li-ion (наприклад, 18650 або будь-який інший)?

Струм буде залежати від того, як швидко ви хотіли б його зарядити і може лежати в межах від 0.2С до 1С.

Наприклад, для акумулятора типорозміру 18650 ємністю 3400 мА/год мінімальний струм заряду становить 680 мА, а максимальний - 3400 мА.

2. Скільки часу потрібно заряджати, наприклад, акумуляторні батареї 18650?

Час заряду залежить від струму заряду і розраховується за формулою:

T = З/I зар.

Наприклад, час заряду акумулятора ємністю 3400 мА/год струмом в 1А складе близько 3.5 годин.

3. Як правильно зарядити літій-полімерний акумулятор?

Будь-які літієві акумулятори заряджаються однаково. Не важливо, літій-полімерний він чи літій-іонний. Для нас, споживачів, жодної різниці немає.

Що таке захист захисту?

Плата захисту (або PCB - power control board) призначена для захисту від короткого замикання, перезаряджання та перерозряджання літієвої батареї. Як правило, в модулі захисту також вбудована і захист від перегріву.

З метою дотримання техніки безпеки заборонено використання літієвих акумуляторів у побутових приладах, якщо в них не вбудована плата захисту. Тому у всіх акумуляторах від мобільних телефонів завжди є PCB-плата. Вихідні клеми АКБ розміщені прямо на платі:

У цих платах використовується шестиногий контролер заряду на спеціалізованій мікрохвілі (JW01, JW11, K091, G2J, G3J, S8210, S8261, NE57600 та ін. аналоги). Завданням цього контролера є відключення батареї від навантаження при повному розряді батареї та відключення акумулятора від зарядки при досягненні 4,25В.

Ось, наприклад, схема плати захисту від акумулятора BP-6M, якими постачалися старі нокіївські телефони:

Якщо говорити про 18650, то вони можуть випускатися як із платою захисту так і без неї. Модуль захисту знаходиться в районі мінусової клеми акумулятора.

Плата підвищує довжину акумулятора на 2-3 мм.

Акумулятори без PCB-модуля зазвичай входять до складу батарей, що комплектуються власними схемами захисту.

Будь-який акумулятор із захистом легко перетворюється на акумулятор без захисту, досить просто розпотрошити його.

Сьогодні максимальна ємність акумулятора 18650 становить 3400 мА/ч. Акумулятори із захистом обов'язково мають відповідне позначення на корпусі (“Protected”).

Не варто плутати PCB-плату із PCM-модулем (PCM - power charge module). Якщо перші служать лише цілям захисту акумулятора, то другі призначені для управління процесом заряду - обмежують струм заряду на заданому рівні, контролюють температуру і забезпечують весь процес. PCM-плата - це те, що ми називаємо контролером заряду.

Сподіваюся, тепер не залишилося питань, як зарядити акумулятор 18650 чи будь-який інший літієвий? Тоді переходимо до невеликої добірки готових схемотехнічних рішень зарядних пристроїв (тих контролерів заряду).

Схеми заряджання li-ion акумуляторів

Всі схеми підходять для заряджання будь-якого літієвого акумулятора, залишається тільки визначитися із зарядним струмом та елементною базою.

LM317

Схема простого зарядного пристрою на основі мікросхеми LM317 з індикатором заряду:

Схема найпростіша, все налаштування зводиться до встановлення вихідної напруги 4.2 вольта за допомогою підстроювального резистора R8 (без підключеного акумулятора!) та встановлення струму заряду шляхом підбору резисторів R4, R6. Потужність резистора R1 – не менше 1 Ватт.

Як тільки згасне світлодіод, процес заряду можна вважати закінченим (зарядний струм до нуля ніколи не зменшиться). Не рекомендується довго тримати акумулятор у цій зарядці після того, як він повністю зарядиться.

Мікросхема lm317 широко застосовується у різних стабілізаторах напруги та струму (залежно від схеми включення). Продається на кожному кутку і коштує взагалі копійки (можна взяти 10 шт. За 55 рублів).

LM317 буває в різних корпусах:

Призначення висновків (цоколівка):

Аналогами мікросхеми LM317 є: GL317, SG31, SG317, UC317T, ECG1900, LM31MDT, SP900, КР142ЕН12, КР1157ЕН1 (останні два – вітчизняного виробництва).

Зарядний струм можна збільшити до 3А, якщо замість LM317 взяти LM350. Вона, щоправда, дорожче буде – 11 руб/шт.

Друкована плата та схема у зборі наведені нижче:

Старий радянський транзистор КТ361 можна замінити на аналогічний p-n-p транзистор (наприклад, КТ3107, КТ3108 або буржуазні 2N5086, 2SA733, BC308A). Його можна взагалі забрати, якщо індикатор заряду не потрібен.

Недолік схеми: напруга живлення має бути в межах 8-12В. Це пов'язано з тим, що для нормальної роботи мікросхеми LM317 різниця між напругою на акумуляторі та напругою живлення має бути не менше 4.25 Вольт. Таким чином, від USB-порту запитати не вдасться.

MAX1555 або MAX1551

MAX1551/MAX1555 - спеціалізовані зарядні пристрої для Li+ акумуляторів, здатні працювати від USB або окремого адаптера живлення (наприклад, зарядника від телефону).

Єдина відмінність цих мікросхем – МАХ1555 видає сигнал для індикатора процесу заряду, а МАХ1551 – сигнал того, що живлення включене. Тобто. 1555 в більшості випадків все-таки краще, тому 1551 зараз вже важко знайти у продажу.

Детальний опис цих мікросхем від виробника.

Максимальна вхідна напруга від DC-адаптера – 7 В, при живленні від USB – 6 В. При зниженні напруги живлення до 3.52 В мікросхема відключається і заряд припиняється.

Мікросхема сама детектує на якому вході є напруга живлення і підключається до нього. Якщо живлення йде по ЮСБ-шині, то максимальний струм заряду обмежується 100 мА - це дозволяє встромити зарядник в USB-порт будь-якого комп'ютера, не побоюючись спалити південний міст.

При живленні від окремого блоку живлення типове значення зарядного струму становить 280 мА.

У мікросхеми вбудовано захист від перегріву. Але навіть у цьому випадку схема продовжує працювати, зменшуючи струм заряду на 17 мА на кожний градус вище за 110°C.

Є функція попереднього заряду (див. вище): доки напруга на акумуляторі знаходиться нижче 3В, мікросхема обмежує струм заряду на рівні 40 мА.

Мікросхема має 5 висновків. Ось типова схема включення:

Якщо є гарантія, що на виході вашого адаптера напруга за жодних обставин не зможе перевищити 7 вольт, можна обійтися без стабілізатора 7805.

Варіант зарядки від USB можна зібрати, наприклад, на .

Мікросхеми не потребує ні зовнішніх діодів, ні зовнішніх транзисторів. Взагалі, звісно, ​​шикарні мікрохи! Тільки вони маленькі надто, паяти незручно. І ще коштують дорого().

LP2951

Стабілізатор LP2951 виробляється фірмою National Semiconductors(). Він забезпечує реалізацію вбудованої функції обмеження струму та дозволяє формувати на виході схеми стабільний рівень напруги заряду літій-іонного акумулятора.

Розмір напруги заряду становить 4,08 - 4,26 вольта і виставляється резистором R3 при відключеному акумуляторі. Напруга тримається дуже точно.

Струм заряду становить 150 - 300мА, це значення обмежено внутрішніми ланцюгами мікросхеми LP2951 (залежить від виробника).

Діод застосовувати з невеликим зворотним струмом. Наприклад, він може бути будь-яким із серії 1N400X, який вдасться придбати. Діод використовується як блокувальний для запобігання зворотного струму від акумулятора в мікросхему LP2951 при відключенні вхідної напруги.

Ця зарядка видає досить низький зарядний струм, тому який-небудь акумулятор 18650 може заряджатися всю ніч.

Мікросхему можна купити як у DIP-корпусі, так і в корпусі SOIC (вартість близько 10 рублів за штучку).

MCP73831

Мікросхема дозволяє створювати правильні зарядні пристрої, до того ж вона дешевша, ніж розкручена MAX1555.

Типова схема включення взята з:

Важливою перевагою схеми є відсутність низькоомних потужних резисторів, що обмежують струм заряду. Тут струм задається резистором, підключеним до 5-го виведення мікросхеми. Його опір має лежати у діапазоні 2-10 кОм.

Зарядка у зборі виглядає так:

Мікросхема в процесі роботи непогано так нагрівається, але це їй не заважає. Свою функцію виконує.

Ось ще один варіант друкованої плати із smd світлодіодом та роз'ємом мікро-USB:

LTC4054 (STC4054)

Дуже проста схема, чудовий варіант! Дозволяє заряджати струмом до 800 мА (див. ). Щоправда, вона має властивість сильно нагріватися, але в цьому випадку вбудований захист від перегріву знижує струм.

Схему можна суттєво спростити, викинувши один або навіть обидва світлодіоди з транзистором. Тоді вона виглядатиме ось так (погодьтеся, простіше нікуди: пара резисторів і один кондер):

Один з варіантів друкованої плати доступний . Плата розрахована під елементи типорозміру 0805.

I=1000/R. Відразу великий струм виставляти не варто, спочатку подивіться, наскільки сильно грітиметься мікросхема. Я для своїх цілей взяв резистор на 2.7 ком, при цьому струм заряду вийшов близько 360 мА.

Радіатор до цієї мікросхеми навряд чи вдасться пристосувати, та й не факт, що він буде ефективним через високий тепловий опір переходу кристал-корпус. Виробник рекомендує робити тепловідведення "через висновки" - робити якомога товстіші доріжки та залишати фольгу під корпусом мікросхеми. І взагалі чим більше буде залишено "земляної" фольги, тим краще.

До речі кажучи, більша частина тепла відводиться через 3 ногу, так що можна зробити цю доріжку дуже широкою і товстою (залити її надмірною кількістю припою).

Корпус мікросхеми LTC4054 може мати маркування LTH7 чи LTADY.

LTH7 від LTADY відрізняються тим, що перша може підняти акумулятор, що сильно сів (на якому напруга менше 2.9 вольт), а друга - ні (потрібно окремо розгойдувати).

Мікросхема вийшла дуже вдалою, тому має купу аналогів: STC4054, MCP73831, TB4054, QX4054, TP4054, SGM4054, ACE4054, LP4054, U4054, BL4054, WPM4054 , VS6102, HX6001, LC6000, LN5060, CX9058, EC49016, CYT5026, Q7051. Перш, ніж використовувати будь-який з аналогів, звіряйтеся по датацит.

TP4056

Мікросхема виконана в корпусі SOP-8 (див. ), має на череві металевий теплознімач не з'єднаний з контактами, що дозволяє ефективніше відводити тепло. Дозволяє заряджати акумулятор струмом до 1А (струм залежить від резистора, що струмозадає).

Схема підключення вимагає мінімум навісних елементів:

Схема реалізує класичний процес заряду - спочатку заряд постійним струмом, потім постійною напругою і струмом, що падає. Все по-науковому. Якщо розібрати зарядку по кроках, можна виділити кілька етапів:

  1. Контролює напругу підключеного акумулятора (це відбувається постійно).
  2. Етап передзаряду (якщо акумулятор розряджено нижче 2.9 В). Заряд струмом 1/10 від запрограмованого резистором R prog (100мА при R prog = 1.2 кОм) рівня 2.9 В.
  3. Заряджання максимальним струмом постійної величини (1000мА при R prog = 1.2 кОм);
  4. При досягненні на батареї 4.2 В напруга на батареї фіксується на цьому рівні. Починається плавне зниження зарядного струму.
  5. При досягненні струму 1/10 від запрограмованого резистором R prog (100мА при R prog = 1.2кОм) зарядний пристрій вимикається.
  6. Після закінчення заряджання контролер продовжує моніторинг напруги акумулятора (див. п.1). Струм, що споживається схемою моніторингу 2-3 мкА. Після падіння напруги до 4.0В, заряджання вмикається знову. І так по колу.

Струм заряду (в амперах) розраховується за формулою I=1200/R prog. Допустимий максимум - 1000 мА.

Реальний тест зарядки з акумулятором 18650 на 3400 мА/год показано на графіку:

Гідність мікросхеми в тому, що струм заряду задається лише одним резистором. Не потрібні потужні низькоомні резистори. Плюс є індикатор процесу заряджання, а також індикація закінчення заряджання. При непідключеному акумуляторі індикатор блимає з періодичністю раз на кілька секунд.

Напруга живлення схеми має лежати не більше 4.5...8 вольт. Чим ближче до 4.5В – тим краще (так чіп менше гріється).

Перша нога використовується для підключення датчика температури, вбудованого в літій-іонну батарею (зазвичай це середнє виведення акумулятора стільникового телефону). Якщо на виводі напруга буде нижчою за 45% або вище 80% від напруги живлення, то зарядка припиняється. Якщо контроль температури вам не потрібний, просто посадіть цю ногу на землю.

Увага! Ця схема має один істотний недолік: відсутність схеми захисту від переполюсування батареї. У цьому випадку контролер гарантовано вигоряє з ладу через перевищення максимального струму. У цьому напруга живлення схеми безпосередньо потрапляє на акумулятор, що дуже небезпечно.

Печатка проста, робиться за годину на коліні. Якщо час терпить, можна замовити готові модулі. Деякі виробники готових модулів додають захист від перевантаження по струму і перерозряду (наприклад, можна вибрати яка плата вам потрібна - із захистом або без, і з яким роз'ємом).

Також можна знайти готові плати з виведеним контактом під температурний датчик. Або навіть модуль зарядки з кількома запаралеленими мікросхемами TP4056 для збільшення зарядного струму та із захистом від переполюсування (приклад).

LTC1734

Теж дуже проста схема. Струм заряду задається резистором R prog (наприклад, якщо поставити резистор на 3 ком, струм дорівнюватиме 500 мА).

Мікросхеми зазвичай мають маркування на корпусі: LTRG (їх можна часто зустріти у старих телефонах від самсунгів).

Транзистор підійде взагалі будь-який p-n-p, головне щоб він був розрахований на заданий струм зарядки.

Індикатора заряду на зазначеній схемі немає, але на LTC1734 сказано, що висновок "4" (Prog) має дві функції - установку струму і контроль закінчення заряду батареї. Для прикладу наведено схему з контролем закінчення заряду за допомогою компаратора LT1716.

Компаратор LT1716 у цьому випадку можна замінити дешевим LM358.

TL431 + транзистор

Напевно, складно придумати схему більш доступних компонентів. Тут найскладніше - це знайти джерело опорної напруги TL431. Але вони настільки поширені, що зустрічаються практично всюди (рідко яке джерело живлення обходиться без цієї мікросхеми).

Ну а транзистор TIP41 можна замінити будь-яким іншим з відповідним струмом колектора. Підійдуть навіть старі радянські КТ819, КТ805 (чи менш потужні КТ815, КТ817).

Налаштування схеми зводиться до встановлення вихідної напруги (без акумулятора!!!) за допомогою підстроювального резистора на рівні 4.2 вольта. Резистор R1 визначає максимальне значення зарядного струму.

Дана схема повноцінно реалізує двоетапний процес заряду літієвих акумуляторів - спочатку заряджання постійним струмом, потім перехід до фази стабілізації напруги і плавне зниження струму практично до нуля. Єдиний недолік - погана повторюваність схеми (примхлива в налаштуванні і вимоглива до компонентів, що використовуються).

MCP73812

Є ще одна незаслужено обділена увагою мікросхема компанії Microchip - MCP73812 (див. ). На її базі виходить дуже бюджетний варіант зарядки (і недорогий!). Весь обвіс - всього один резистор!

До речі, мікросхема виконана у зручному для паяння корпусі – SOT23-5.

Єдиний мінус сильно гріється і немає індикації заряду. Ще вона якось не дуже надійно працює, якщо у вас малопотужне джерело живлення (яке дає просідання напруги).

Загалом, якщо вам індикація заряду не важлива, і струм в 500 мА вас влаштовує, то МСР73812 - дуже непоганий варіант.

NCP1835

Пропонується повністю інтегроване рішення - NCP1835B, що забезпечує високу стабільність зарядної напруги (4.2±0.05).

Мабуть, єдиним недоліком даної мікросхеми є її мініатюрний розмір (корпус DFN-10, розмір 3х3 мм). Не кожному під силу забезпечити якісне паяння таких мініатюрних елементів.

З незаперечних переваг хотілося б відзначити таке:

  1. Мінімальна кількість деталей обважування.
  2. Можливість заряджання повністю розрядженої батареї (передзаряд струмом 30мА);
  3. Визначення закінчення заряджання.
  4. Програмований зарядний струм – до 1000 мА.
  5. Індикація заряду та помилок (здатна детектувати незаряджувані батареї та сигналізувати про це).
  6. Захист від тривалого заряду (змінюючи ємність конденсатора С, можна задати максимальний час заряду від 6,6 до 784 хвилин).

Вартість мікросхеми не те щоб копійчана, а й не настільки велика (~1$), щоб відмовитися від її застосування. Якщо ви дружите з паяльником, я б порекомендував зупинити свій вибір на цьому варіанті.

Більш детальний опис знаходиться в .

Чи можна заряджати літій-іонний акумулятор без контролера?

Так можна. Однак це вимагатиме щільного контролю за зарядним струмом та напругою.

Взагалі, зарядити АКБ, наприклад, наш 18650 без зарядного пристрою не вийде. Все одно потрібно якось обмежувати максимальний струм заряду, так що хоча б найпримітивніше ЗУ, але все ж таки буде потрібно.

Найпростіший зарядний пристрій для будь-якого літієвого акумулятора - це резистор, послідовно включений з акумулятором:

Опір та потужність розсіювання резистора залежать від напруги джерела живлення, яке використовуватиметься для заряджання.

Давайте як приклад, розрахуємо резистор для блоку живлення напругою 5 Вольт. Заряджатимемо акумулятор 18650, ємністю 2400 мА/год.

Отже, на початку зарядки падіння напруга на резисторі становитиме:

U r = 5 - 2.8 = 2.2 Вольта

Припустимо, що наш 5-вольтовий блок живлення розрахований на максимальний струм 1А. Найбільший струм схема буде споживати на початку заряду, коли напруга на акумуляторі мінімальна і становить 2.7-2.8 Вольта.

Увага: у цих розрахунках не враховується ймовірність того, що акумулятор може бути дуже глибоко розрядженим і напруга на ньому може бути набагато нижчою, аж до нуля.

Таким чином, опір резистора, необхідне обмеження струму на початку заряду лише на рівні 1 Ампера, має становити:

R = U / I = 2.2 / 1 = 2.2 Ом

Потужність розсіювання резистора:

P r = I 2 R = 1 * 1 * 2.2 = 2.2 Вт

В самому кінці заряду акумулятора, коли напруга на ньому наблизиться до 4.2, струм заряду становитиме:

I зар = (U іп – 4.2) / R = (5 – 4.2) / 2.2 = 0.3 А

Тобто, як ми бачимо, всі значення не виходять за рамки допустимих для даного акумулятора: початковий струм не перевищує максимально допустимий струм заряду для даного акумулятора (2.4 А), а кінцевий струм перевищує струм, при якому акумулятор перестає набирати ємність ( 0.24 А).

Найголовнішим недоліком такої зарядки є необхідність постійно контролювати напругу на акумуляторі. І вручну вимкнути заряд, як тільки напруга досягне 4.2 Вольта. Справа в тому, що літієві акумулятори дуже погано переносять навіть короткочасну перенапругу - електродні маси починають швидко деградувати, що неминуче призводить до втрати ємності. Поруч із створюються всі передумови для перегріву і розгерметизації.

Якщо у ваш акумулятор вбудована плата захисту, про які йшлося трохи вище, все спрощується. Після досягнення певної напруги на акумуляторі, плата сама відключить його від зарядного пристрою. Однак такий спосіб зарядки має суттєві мінуси, про які ми розповідали у .

Захист, вбудований в акумулятор, не дозволить його перезарядити за жодних обставин. Все, що вам залишається зробити, це проконтролювати струм заряду, щоб він не перевищив допустимі значення для акумулятора (плати захисту не вміють обмежувати струм заряду, на жаль).

Заряджання за допомогою лабораторного блоку живлення

Якщо у вашому розпорядженні є блок живлення із захистом (обмеженням) по струму, то ви врятовані! Таке джерело живлення є повноцінним зарядним пристроєм, що реалізує правильний профіль заряду, про який ми писали вище (СС/СV).

Все, що потрібно зробити для заряджання li-ion - це виставити на блоці живлення 4.2 вольта і встановити бажане обмеження струму. Можна підключати акумулятор.

Спочатку, коли акумулятор ще розряджений, лабораторний блок живлення працюватиме в режимі захисту струму (тобто стабілізуватиме вихідний струм на заданому рівні). Потім, коли напруга на банку підніметься до 4.2В, блок живлення перейде в режим стабілізації напруги, а струм при цьому почне падати.

Коли струм впаде до 0.05-0.1С, акумулятор можна вважати повністю зарядженим.

Як бачите, лабораторний БП – практично ідеальний зарядний пристрій! Єдине, що він не вміє робити автоматично, це приймати рішення про повну зарядку акумулятора та відключатися. Але це дрібниця, яку навіть не варто звертати уваги.

Як заряджати літієві батареї?

І якщо ми говоримо про одноразову батарейку, не призначену для перезарядки, то правильна (і єдино правильна) відповідь на це питання - НІЯК.

Справа в тому, що будь-яка літієва батарейка (наприклад, поширена CR2032 у вигляді плоскої таблетки) характеризується наявністю внутрішнього шару, що пасивує, яким покритий літієвий анод. Цей шар запобігає хімічній реакції анода з електролітом. А подача стороннього струму руйнує вищезгаданий захисний шар, приводячи до псування елемента живлення.

До речі, якщо говорити про батарею CR2032, що незаряджається, тобто дуже схожа на неї LIR2032 - це вже повноцінний акумулятор. Її можна і потрібно заряджати. Тільки в неї напруга не 3, а 3.6В.

Про те ж, як заряджати літієві акумулятори (чи то акумулятор телефону, 18650 або будь-який інший li-ion акумулятор) йшлося на початку статті.

85 коп/шт. Придбати MCP73812 65 руб/шт. Придбати NCP1835 83 руб/шт. Придбати *Всі мікросхеми з безкоштовною доставкою


Прогрес йде вперед, і на зміну традиційним NiCd (нікель-кадмієвим) і NiMh (нікель-металогідридним) все частіше приходять літієві акумулятори.
При порівнянні ваги одного елемента, літій має велику ємність, крім того, напруга елемента у них втричі вище - 3,6 V на елемент, замість 1,2 V.
Вартість літієвих акумуляторів почала наближатися до звичайних лужних батарей, вага і розмір набагато менші, та до того ж їх можна і потрібно заряджати. Виробник каже, 300-600 циклів витримують.
Розміри є різні і підібрати потрібний не складає труднощів.
Саморозряд настільки низький, що лежать роками залишаються зарядженими, тобто. пристрій залишається робочим коли він потрібний.

"С" означає Capacity

Часто зустрічається позначення виду xC. Це просто зручне позначення струму заряду або розряду акумулятора із частками його ємності. Утворено від англійського слова Capacity (місткість, ємність).
Коли говорять про зарядку струмом 2С, або 0.1С, зазвичай мають на увазі, що струм повинен становити (2 × ємність акумулятора)/h або (0.1 × ємність акумулятора)/h відповідно.
Наприклад, акумулятор ємністю 720 mAh, для якого струм заряду становить 0.5С, треба заряджати струмом 0.5 × 720mAh/h = 360 мА, це стосується і розряду.

А можна зробити найпростіший або не дуже простий зарядний пристрій, залежно від вашого досвіду та можливостей.

Схема простого зарядного пристрою на LM317


Мал. 5.


Схема із застосуванням забезпечує досить точну стабілізацію напруги, що встановлюється потенціометром R2.
Стабілізація струму не така критична, як стабілізація напруги, тому достатньо стабілізувати струм за допомогою шунтуючого резистора Rx і NPN-транзистора (VT1).

Необхідний струм зарядки для конкретного літій-іонного (Li-Ion) та літій-полімерного (Li-Pol) акумулятора вибирається шляхом зміни опору Rx.
Опір Rx приблизно відповідає наступному відношенню: 0,95/Imax.
Вказане на схемі значення резистора Rx відповідає струму 200 мА, це зразкове значення, залежить так само від транзистора.

Потрібно забезпечити радіатором залежно від струму заряду та вхідної напруги.
Вхідна напруга повинна бути вищою за напругу акумулятора мінімум на 3 Вольта для нормальної роботи стабілізатора, що для однієї банки становить?7-9 V.

Схема простого зарядного пристрою на LTC4054


Мал. 6.


Можна випаяти контролер заряду LTC4054 зі старого стільникового телефону, наприклад Samsung (C100, С110, Х100, E700, E800, E820, P100, P510).


Мал. 7. У цього дрібного 5-ногого чіпа маркування «LTH7» або «LTADY»

Вдаватися в найдрібніші подробиці роботи з мікросхемою я не буду, все є в датасіті. Опишу лише найнеобхідніші особливості.
Струм заряду до 800 мА.
Оптимальна напруга від 4,3 до 6 Вольт.
Індикація заряду.
Захист від КЗ на виході.
Захист від перегріву (зниження струму заряду за температури більше 120°).
Не заряджає акумулятор при напрузі на ньому нижче 2,9V.

Струм заряду задається резистором між п'ятим виведенням мікросхеми та землею за формулою

I=1000/R,
де I – струм заряду в Амперах, R – опір резистора в Омах.

Індикатор розряджання літієвого акумулятора

Ось проста схема, яка запалює світлодіод, коли батарея розряджена та її залишкова напруга близька до критичного.


Мал. 8.


Транзистори будь-які малопотужні. Напруга запалювання світлодіода підбирається дільником з резисторів R2 та R3. Схему краще підключати після блоку захисту, щоб світлодіод не розрядив акумулятор зовсім.

Нюанс довговічності

Виробник зазвичай заявляє 300 циклів, але якщо заряджати літій всього на 0,1 Вольта менше, до 4.10, то кількість циклів зростає до 600 і навіть більше.

Експлуатація та запобіжні заходи

Можна з упевненістю сказати, що літій-полімерні акумулятори найніжніші акумулятори з існуючих, тобто вимагають обов'язкового дотримання кількох нескладних, але обов'язкових правил, через недотримання яких трапляються неприємності.
1. Не допускається заряд до напруги, що перевищує 4.20 Вольт на банку.
2. Коротке замикання акумулятора не допускається.
3. Не допускається розряд струмами, що перевищують здатність навантаження або нагрівають акумулятор вище 60°С. 4. Шкідливий розряд нижче напруги 3.00 Вольта на банку.
5. Шкідливе нагрівання акумулятора вище 60°С. 6. Шкідлива розгерметизація акумулятора.
7. Шкідливе зберігання у розрядженому стані.

Невиконання перших трьох пунктів призводить до пожежі, решти - до повної чи часткової втрати ємності.

З практики багаторічного використання можу сказати, що ємність акумуляторів змінюється мало, але збільшується внутрішній опір і акумулятор починає працювати менше часу при великих струмах споживання - створюється враження, що ємність впала.
Тому я зазвичай ставлю більшу ємність, яку дозволяють габарити пристрою, і навіть старі банки, яким років по десять, працюють цілком пристойно.

Для невеликих струмів підходять старі акумулятори від стільникових.


Зі старої ноутбучної батареї можна витягнути багато цілком робочих акумуляторів формату 18650.

Де я використовую літієві батареї

Давно переробив шуруповерт та електровикрутку на літій. Користуюся цими інструментами нерегулярно. Тепер навіть за рік невикористання вони працюють без підзарядки!

Маленькі батареї ставлю в дитячі іграшки, годинник і т.д., де із заводу стояли 2-3 «таблеткові» елементи. Там де потрібно рівно 3V додаю один діод послідовно і виходить саме.

Ставлю у світлодіодні ліхтарики.

У тестер замість дорогої та малоємної «Крони 9V» встановив 2 банки та забув усі проблеми та зайві витрати.

Загалом ставлю скрізь, де виходить, замість батарейок.

Де я купую літій та корисності по темі

Продаються. За цим посиланням знайдете модулі зарядок та ін. корисності для саморобників.

На рахунок ємності китайці зазвичай брешуть і вона менша за написану.


Чесні Sanyo 18650

У статті розповімо про контролер заряду Li-Ion на MCP73833.

Малюнок 1.

Попередній досвід

До цього моменту я використовував контролери LT4054 і, чесно кажучи, був ним задоволений:

Він дозволяв заряджати компактні Li-Pol акумулятори ємністю до 3000мАч

Був ультрокомпактен: sot23-5

Мав індикатор заряджання акумулятора

Має купу захистів, що робить з нього чіп, що практично не вбивається.

Малюнок 2.

Додатковим плюсом є те, що перед тим, як я на ньому почав щось робити, я купив їх 50 штук, за дуже скромною ціною.

Недоліки я виявив у роботі, і вони мене, чесно кажучи, поставили в частковий ступор:

Максимальний заявлений струм 1А, думав я. Але вже за 300мА у процесі зарядки чіп прогрівається до 110*С навіть за наявності великих полігонів-радіаторів та радіатора прикріпленого до пластикової поверхні чіпа.

Під час включення теплового захисту там мабуть спрацьовує компаратор, який швидко скидає струм. Внаслідок цього мікросхема перетворюється на генератор, який вбиває батарейку. Таким чином я вбив 2 акумулятори, поки не зрозумів у чому справу з осцилографом.

У зв'язку з цим я отримав проблему з часом заряду пристрою близько 10 годин. Звичайно, це сильно не влаштовувало мене і споживачів моєї електроніки, але що вдієш: всі хотіли збільшити ресурс роботи при тих же параметрах пристрою, а вони в мене часом споживають багато.

У зв'язку з цим я почав шукати контролер, який був би з куди кращими параметрами та можливостями тепловідведення і мій вибір зупинився поки на MCP73833 в основному через те, що дані контролери були у мого друга в наявності, і я свиснув пару штук швидко( швидше за нього) запаяв прототип і провів потрібні мені випробування.

Трохи про самого контролера.

Давайте я не займатимуся повним і досконалим перекладом даташита (хоча це і корисно), а швидко і просто розповім про те, на що я дивився в першу чергу в даному контролері і подобалося мені це чи ні.

1. Загальна схема включення – це те, що впадає у вічі від початку. Легко помітити, що за винятком індикації (яку можна і не робити) обв'язування складається лише з 4 деталей. Вони входять два фільтруючих конденсатора, резистор програмування струму заряду акумулятора і терморезистор на 10к контролю перегріву Li-Ion акумулятора. Ця схема показана малюнку 3. Це безперечно здорово.

Малюнок 3.Схема підключення MCP73833

2. У неї в рази краще з теплом. Це видно навіть за схемою підключення, оскільки видно однакові ніжки, які можна використовувати під відведення тепла. Додатково до цього, глянувши на те, що мікросхема випускається в корпусах msop-10 і DFN-10, які більші за площею поверхні ніж sot23-5. Тим більше, в корпусі DFN-10 є спеціальний полігон, який можна і потрібно використовувати як відведення тепла на велику поверхню. Якщо не вірите, то самі дивіться на малюнок 4. На ньому наведені висновки ніжок у DFN-10 корпусу та рекомендована виробником трасування друкованої плати з відведенням тепла за допомогою полігону.

Малюнок 4.

3. Наявність терморезистора на 10к. Звичайно, в більшості випадків я ним користуватися не буду, тому що я впевнений, що не перегрію батарейку, але є завдання, в яких я маю на увазі повний заряд батарейки всього за 30 хвилин роботи від блока живлення. У таких випадках можливий варіант перегріву самого акумулятора.

4. Досить складна система індикації заряджання акумулятора. Як я зрозумів і спробував: там 1 світлодіод відповідає за те, чи підведено живлення з боку блоку живлення, що заряджає. За ідеєю, штука не така потрібна, але: у мене були випадки, коли я розбивав роз'єм і просто контролер не отримував 5В на вхід. У таких випадках одразу було зрозуміло, що не так. Вкрай корисна фішка для розробників. Для споживачів вона легко замінюється просто світлодіодом по лінії 5В входу, встановленого з резистором, що обмежує його струм.

5. Два інших світлодіоди розбиті на стадії зарядки. Це дозволяє розвантажити МК (якщо не потрібно наприклад показувати на дисплеї заряд акумулятора) у плані обробки заряду на батарейці під час заряджання (індикація зарядився чи ні).

6. Програмування струму заряду у межах. Особисто я спробував витягнути на платі, показаній на малюнку 1 зарядний струм в 1А, і на позначці 890мА плата у стабільному режимі роботи йшла у тепловий захист. Як кажуть люди навколо, при великих полігонах вони чудово витягували з даного контролера і 2А, а за технічним описом граничний струм заряду 3А, але я маю низку сумнівів, пов'язаних з тепловим навантаженням на мікросхему.

7. Якщо вірити даташиту, то в даній мікросхемі є: Low-Dropout Linear Regulator Mode – режим зниженої вхідної напруги. У цих режимах ви, за допомогою DC-DC перетворювача, акуратно можете на час початку заряду трохи знизити напругу на вході мікросхеми, для зменшення її тепловиділень. Особисто я пробував знижувати напругу, і тепла ставало логічно менше, але на цій мікросхемі повинно падати хоча б 0,3-0,4В, щоб вона могла зручно заряджати їй батарейку. Чисто технічно я збираюся зробити невеликий модуль, який це робить автоматично, але грошей і часу на це у мене немає, тому радісно прошу в пошту всіх, хто зацікавився. Якщо вас набереться ще кілька людей, то таку штуку нашим сайтом ми випустимо.

8. Не сподобалося, що корпус дуже маленький. Паяти його без фена (DFN-10) складно, і якісно не вийде, як не крути. З msop-10 краще, але у новачків йде значний час навчитися техніці його паяння.

9. Не сподобалося, що в даному контролері немає вбудованого BMS (захист акумулятора від швидкого заряду/розряду та ще ряду проблем). Але такі штуки є у дорожчих контролерів у тих-таки TI.

10. Сподобалася вартість. Ці контролери не дорогі.

Що далі?

А далі я збираюся впроваджувати цю мікросхему в різні свої ідеї щодо пристроїв. Наприклад, сьогодні вже вироблятися заводі пробна версія налагоджувальної плати з урахуванням STM32F103RCT6 і 18650 акумуляторів. У мене вже є налагоджувальна плата на даному контролері, яка себе дуже добре зарекомендувала і я хочу доповнити її версією для того, щоб я міг взяти свій робочий проект з собою і не думати про живлення та пошуки розетки, в яку можна вставити блок живлення.

Також я використовуватиму її у всіх рішеннях, де потрібні зарядні струми більше 300мА.

Сподіваюся і ви, зможете застосувати цю корисну та просту мікросхему у своїх пристроях.

Якщо взагалі цікаво про батарейне живлення, то мій особистий відеозапис з приводу батарейного живлення пристроїв.

Спочатку потрібно визначитися з термінологією.

Як таких контролерів розряду-заряду не існує. Це – нонсенс. Немає жодного сенсу керувати розрядом. Струм розряду залежить від навантаження - скільки їй треба, стільки воно і візьме. Єдине, що потрібно робити при розряді, - це стежити за напругою на акумуляторі, щоб не допустити його перерозряду. Для цього застосовують.

При цьому окремо контролери зарядуне тільки існують, але й необхідні для здійснення процесу зарядки li-ion акумуляторів. Саме вони задають потрібний струм, визначають момент закінчення заряду, стежать за температурою тощо. Контролер заряду є невід'ємною частиною будь-якого.

Виходячи зі свого досвіду, можу сказати, що під контролером заряду/розряду насправді розуміють схему захисту акумулятора від занадто глибокого розряду і, навпаки, перезарядження.

Іншими словами, коли говорять про контролера заряду/розряду, йдеться про вбудований майже у всі літій-іонні акумулятори захисту (PCB-або PCM-модулях). Ось вона:

І ось також вони:

Очевидно, що плати захисту представлені у різних форм-факторах та зібрані із застосуванням різних електронних компонентів. У цій статті ми і розглянемо варіанти схем захисту Li-ion акумуляторів (або, якщо хочете, контролерів розряду/заряду).

Контролери заряду-розряду

Якщо ця назва так добре зміцнилася в суспільстві, ми теж її використовуватимемо. Почнемо, мабуть, із найпоширенішого варіанту на мікросхемі DW01 (Plus).

DW01-Plus

Така захисна плата для акумуляторів li-ion зустрічається у кожному другому акумуляторі від мобільного телефону. Щоб дістатися до неї, досить просто відірвати самоклейку з написами, якою обклеєний акумулятор.

Сама мікросхема DW01 - шестинога, а два польові транзистори конструктивно виконані в одному корпусі у вигляді 8-ногого складання.

Висновок 1 і 3 – це управління ключами захисту від розряду (FET1) та перезаряду (FET2) відповідно. Порогові напруги: 2.4 та 4.25 Вольта. Висновок 2 - датчик, що вимірює падіння напруги на польових транзисторах, завдяки чому реалізовано захист від перевантаження струмом. Перехідний опір транзисторів виступає ролі вимірювального шунта, тому поріг спрацьовування має дуже великий розкид від виробу до виробу.

Вся схема виглядає приблизно так:

Права мікросхема з маркуванням 8205А - і є польові транзистори, виконують у схемі роль ключів.

S-8241 Series

Фірма SEIKO розробила спеціалізовані мікросхеми для захисту літій-іонних та літій-полімерних акумуляторів від перерозряду/перезаряду. Для захисту однієї банки застосовуються інтегральні схеми серії S-8241.

Ключі захисту від перерозряду та перезаряду спрацьовують відповідно при 2.3В та 4.35В. Захист струму включається при падінні напруги на FET1-FET2 рівному 200 мВ.

AAT8660 Series

LV51140T

Аналогічна схема протекції літієвих однобанкових акумуляторів із захистом від перерозряду, перезаряду, перевищення струмів заряду та розряду. Реалізована із застосуванням мікросхеми LV51140T.

Порогові напруги: 2.5 та 4.25 Вольта. Друга ніжка мікросхеми - вхід детектора перевантаження струмом (граничні значення: 0.2В при розряді і -0.7В при зарядці). Висновок 4 не задіяний.

R5421N Series

Схемотехнічне рішення аналогічне попереднім. У робочому режимі мікросхема споживає близько 3 мкА, в режимі блокування - близько 0.3 мкА (літера С у позначенні) та 1 мкА (літера F у позначенні).

Серія R5421N містить кілька модифікацій, що відрізняються величиною напруги спрацьовування при перезарядженні. Подробиці наведено в таблиці:

SA57608

Ще один варіант контролера заряду/розряду, тільки вже на мікросхемі SA57608.

Напруги, у яких мікросхема відключає банку від зовнішніх ланцюгів, залежить від буквеного індексу. Подробиці див. у таблиці:

SA57608 споживає досить великий струм у сплячому режимі - близько 300 мкА, що відрізняє її від перерахованих вище аналогів в гірший бік (там споживані струми порядку часток мікроампера).

LC05111CMT

Ну і насамкінець пропонуємо цікаве рішення від одного зі світових лідерів з виробництва електронних компонентів On Semiconductor - контролер заряду-розряду на мікросхемі LC05111CMT.

Рішення цікаво тим, що ключові MOSFET вбудовані в саму мікросхему, тому з навісних елементів залишилися тільки кілька резисторів і один конденсатор.

Перехідний опір вбудованих транзисторів становить ~11 міліом (0.011 Ом). Максимальний струм заряду/розряду – 10А. Максимальна напруга між виводами S1 та S2 – 24 Вольта (це важливо при об'єднанні акумуляторів у батареї).

Мікросхема випускається у корпусі WDFN6 2.6x4.0, 0.65P, Dual Flag.

Схема, як і очікувалося, забезпечує захист від перезаряду/розряду, від перевищення струму в навантаженні та від надмірного зарядного струму.

Контролери заряду та схеми захисту – у чому різниця?

Важливо розуміти, що модуль захисту та контролери заряду - це не одне й те саме. Так, їх функції до певної міри перетинаються, але називати вбудований в акумулятор модуль захисту контролером заряду було б помилкою. Зараз поясню у чому різниця.

Найважливіша роль будь-якого контролера заряду полягає у реалізації правильного профілю заряду (як правило, це CC/CV - постійний струм/постійна напруга). Тобто контролер заряду повинен вміти обмежувати струм зарядки на заданому рівні, тим самим контролюючи кількість енергії, що "заливається" в батарею в одиницю часу. Надлишок енергії виділяється у вигляді тепла, тому будь-який контролер заряду у процесі роботи досить сильно розігрівається.

Тому контролери заряду ніколи не вбудовують в акумулятор (на відміну від плат захисту). Контролери просто є частиною правильного зарядного пристрою та не більше.

Крім того, жодна плата захисту (або модуль захисту, називайте як хочете) не здатна обмежувати струм заряду. Плата лише контролює напруга на самій банку і у разі виходу його за заздалегідь встановлені межі, розмикає вихідні ключі, відключаючи тим самим банку від зовнішнього світу. До речі, захист від КЗ теж працює за таким самим принципом - при короткому замиканні напруга на банку різко просаджується і спрацьовує схема захисту від глибокого розряду.

Плутанина між схемами захисту літієвих акумуляторів і контролерів заряду виникла через схожість порога спрацьовування (~4.2В). Тільки у випадку з модулем захисту відбувається повне відключення банки від зовнішніх клем, а у випадку з контролером заряду відбувається перемикання в режим стабілізації напруги та поступового зниження зарядного струму.


Навіщо літій-іонному акумулятору потрібен контролер зарядки?

Багато читачів сайту запитують про те, що таке контролер заряду літій іонного акумулятора, і для чого він потрібен. Це питання коротко згадувалося у матеріалах, де описувалися різні типи літієвих акумуляторів. Цей тип акумуляторних батарей практично завжди має у своєму складі контролер зарядки, який ще називають платою захисту Battery Monitoring System (BMS). У цій статті докладніше розглянемо, що це за пристрій, і як воно функціонує.

Найпростіший варіант контролера заряджання літій-іонних АКБ можна побачити, якщо розібрати акумулятор планшетного комп'ютера або телефону. Він складається з банки (акумуляторного елемента) та друкованої плати захисту BMS. Це і є контролер зарядки, який можна побачити на фото нижче.

Основою тут є мікросхема контролера захисту. Польові транзистори використовуються для роздільного керування захистом під час заряджання та розряджання акумуляторного елемента.

Призначення контролера захисту в тому, що він стежить за тим, щоб банк не заряджав вище напруги 4,2 вольта. Акумуляторний літієвий елемент має номінальну напругу 3,7 вольта. Перезаряд та перевищення напруги вище 4,2 вольта можуть призвести до того, що елемент вийде з ладу.

В акумуляторах смартфонів та планшетів плата BMS стежить за процесом заряду та розряду одного елемента (банки). У акумуляторах ноутбуків таких банок кілька. Зазвичай від 4 до 8.

Також контролер стежить за процесом розряджання акумуляторного елемента.При падінні напруги нижче порогового (зазвичай 3 вольти) схема відключає банку від споживача струму. Внаслідок цього пристрій, що працює від акумулятора, просто вимикається.
Серед інших функцій контролера заряджання варто відзначити захист від короткого замикання. На деяких платах захисту BMS встановлюється терморезистор для захисту акумулятора від перегріву.

Плати захисту BMS для літій-іонних акумуляторів

Контролер, розглянутий вище є найпростішим варіантом захисту BMS. Насправді різновидів таких плат набагато більше і є досить складні та дорогі. Залежно від сфери застосування виділяють такі види:

  • Для портативної мобільної електроніки;
  • для побутової техніки;
  • Застосовуються у відновлюваних джерелах енергії.


Часто такі плати захисту BMS можна зустріти у складі систем із сонячними батареями та у вітряних генераторах. Там зазвичай верхній поріг спрацьовування захисту за напругою становить 15, а нижній – 12 вольт. Сам акумулятор у штатному режимі видає напругу 12 вольт. До акумулятора підключається джерело енергії (наприклад, сонячна панель). Підключення здійснюється через реле.

При збільшенні напруги на акумуляторі більше 15 вольт спрацьовують реле і розмикають зарядний ланцюг. Після цього джерело енергії працює на передбачений для цього баласт. Як кажуть фахівці, у випадку із сонячними панелями це може дати небажані побічні ефекти.

У разі вітряних генераторів BMS контролери використовуються обов'язково. Контролери зарядки для побутової техніки та мобільних пристроїв мають суттєві відмінності. А ось контролери акумуляторів ноутбуків, планшетів та телефонів мають однакову схему. Різниця полягає лише у кількості контрольованих акумуляторних елементів.

mob_info