Технологии реалистичности трехмерного изображения. Трёхмерное искусство Моделирование реалистичного изображения сферы c

К 3D-искусству можно отнести разновидность граффити, трёхмерную компьютерную графику, реалистичные рисунки, которые создают иллюзию трехмерной сцены.

Художники всегда стремились к правдоподобному представлению природы и окружающих вещей. В наш современный век этого легко достичь при помощи передовых устройств. Тем не менее, есть нечто очаровывающее и особенно привлекающее во многих 3D-изображениях, созданных рукой человека. Ведь техника 3D-рисунка требует большого мастерства и терпения, не говоря уже о таланте.

Предлагаем полюбоваться творениями разных мастеров, чьи работы выполнены в реалистичном 3D-жанре.

1. Очки.

Простой, элегантный и причудливый 3D-рисунок, который выглядит реалистично.

2. «Зал Гигантов», Палаццо Те, Мантуя, Италия

Иллюзионистские фрески 16-го века, выполненные Джулио Романо, относят к истокам 3D-искусства.

3. Карандашный 3D-рисунок Нагаи Хидеюки

Художник создает трёхмерную иллюзию, используя лишь альбом и цветные карандаши.

4. Музей 3D-картин в городе Чиангмай, Таиланд

Существует целый музей, посвященный 3D-искусству, в Таиланде. Его залы наполнены большими фресками, которые выглядят совершенно реально.

5. Кока кола - иллюзия

Часто вдохновение для 3D-искусства берёт начало в популярных объектах из нашей повседневной жизни. Классический вариант - бутылка Колы.

6. Компьютерная графика: Девушка

Кто бы мог подумать, что этой девушки не существует?

7. Колонны коринфского ордера

Прекрасный карандашный 3D-рисунок двух коринфских колонн.

8. Реалистичный водопад в городе Двур Кралове, Чехия

Часть городского парка в Чешской Республике превратили в иллюзию прекрасного водопада.

9. Глобус

Нередко 3D-искусство используют в маркетинге. Эта картина земного шара призывает людей на борьбу с бедностью.

10. Игорь Таритас

Молодой художник создает картины, используя основы гиперреализма. Это полотно излучает глубину реального мира, словно при желании мы можем выйти на сцену.

11. Дейви Джонс от Джерри Грошке

Классический персонаж из «Пиратов Карибского моря», созданный 3D-художником компьютерной графики.

12. Казухико Накамура

Японский 3D-художник, который создаёт креативные стимпанк фотографии с помощью программного обеспечения.

13. Курт Веннер: Дикое родео в Калгари, Канада

Один из самых известных современных 3D-художников, Курт Веннер, изобразил вымышленное родео в канадском городе.

14. Леон Кир, Рубен Понциа, Ремко ван Шайк и Питер Вестеринг

Четыре художники объединились, чтобы создать эту невероятную иллюзию армии Лего.

15. Лодзь, Польша

Бассейн возле оживлённого торгового центра в городе Лодзь, Польша. Надеюсь, никто в него не прыгнул.

16. Рынок

Красивый 3D-натюрморт, нарисованный на асфальте возле овощного рынка. Он дополняет атмосферу идеальной изысканностью.

17. МТО, Ренн, Франция

Уличный художник МТО создал серию масштабных 3D-фресок в Ренн, Франция. В его настенной живописи фигурируют великаны, пытающиеся проникнуть в дома людей. Картины и потрясают, и ужасают.

Для повышения реалистичности отображения наложенных на полигоны текстур используются различные технологии:

· сглаживания (Anti-aliasing);

· MIP – mapping;

· текстурной фильтрации.

Технология сглаживания (Anti-aliasing)

Anti-aliasing – это технология, использующаяся в обработке изображений с целью устранения эффекта «ступенчатых» краев (Aliasing) объектов. При растровом методе формирования изображения оно состоит из пикселей. Из-за того, что пиксели имеют конечный размер, на краях трехмерных объектов можно различить так называемую лестницу или ступенчатые края. Чтобы минимизировать эффект лестницы проще всего увеличить разрешение экрана, уменьшив тем самым размер пикселей. Но этот путь не всегда возможен. Если избавиться от ступенчатого эффекта за счет повышения разрешения монитора нельзя, можно использовать технологию Anti-aliasing, которая позволяет визуально сгладить эффект лестницы. Наиболее часто используемая для этого техника – это создание плавного перехода от цвета линии или края к цвету фона. Цвет точки, лежащей на границе объектов, определяется как среднее значение цветов двух граничных точек.

Существует несколько базовых технологий Anti-aliasing. Наиболее качественный результат впервые дала технология полноэкранного сглаживания FSAA (Full Screen Anti-Aliasing). В некоторых литературных источниках эта технология носит название SSAA. Суть данной технологии заключается в том, что процессор рассчитывает кадр изображения в гораздо большем разрешении, чем разрешение экрана, а затем при выводе на экран усредняет значения группы пикселей до одного; количество усредненных пикселей соответствует разрешению экрана монитора. Например, если кадр с разрешением 800х600 сглаживается с помощью FSAA, изображение будет рассчитываться в разрешении 1600х1200. При переходе к разрешению монитора цвета четырех рассчитанных точек, соответствующих одному пикселю монитора, усредняются. В результате у всех линий появляются плавные цветовые границы переходов, что визуально устраняет эффект лестницы.

FSAA делает много лишней работы, загружая графический процессор, сглаживая не границы, а изображение целиком, что является его главным недостатком. Для устранения данного недостатка был разработан более экономная технология - MSSA.

Суть технологии MSSA аналогична технологии FSAA, но над пикселями, находящимися внутри полигонов, никаких расчетов не проводится. Для пикселей на границах объектов в зависимости от уровня сглаживания рассчитывается 4 и более дополнительных точек, по которым и определяется итоговый цвет пикселя. Эта технология наиболее распространена в настоящее время.

Известны индивидуальные разработки производителей видеоадаптеров. Например, NVIDIA разработала технологию Coverage Sampling (CSAA), которая поддерживается только видеоадаптерами GeForce, начиная с 8-ой серии (8600 – 8800, 9600 – 9800). Компания ATI ввела в графический процессор R520 и все последующие адаптивное сглаживание ААА (Adaptive Anti-Aliasing).

Технология MIP mapping

Технология используется для улучшения качества текстурирования трехмерных объектов. Для придания реалистичности трехмерному изображению необходимо учитывать глубину сцены. По мере удаления от точки наблюдения накладываемая текстура должна выглядеть всё более размыто. Поэтому при текстурировании даже однородной поверхности чаще всего используется не одна, а несколько текстур, что позволяет корректно учитывать перспективные искажения трехмерного объекта.

Например, необходимо изобразить брусчатую мостовую, уходящую вглубь сцены. Если попытаться использовать всего одну текстуру по всей длине, то по мере удаления от точки наблюдения может появиться рябь или просто один сплошной цвет. Дело в том, что в этой ситуации сразу несколько пикселей текстуры (текселов) попадает в один пиксель на мониторе. Возникает вопрос: в пользу какого одного тексела сделать выбор при отображении пикселя?

Эта задача и решается с помощью технологии MIP mapping, которая подразумевает возможность применения набора текстур с различной степенью детализации. На базе каждой текстуры создается набор текстур с меньшим уровнем детализации. Текстуры такого набора называются MIP – картами (MIP map).

В простейшем случае наложения текстуры для каждого пикселя изображения определяется соответствующая ему MIP – карта согласно таблицы детализации LOD(Level of Detail). Далее из MIP – карты выбирается только один тексел, цвет которого присваивается пикселю.

Технологии фильтрации

Как правило, технология MIP mapping используется в сочетании с технологиями фильтрации, призванными исправить артефакты MIP –текстурирования. Например, при удалении объекта всё дальше от точки наблюдения происходит переход от низкого MIP map-уровня к более высокому MIP map-уровню. В момент нахождения объекта в переходном состоянии от одного MIP map-уровня к другому появляется особый тип ошибок визуализации: явно различимые границы перехода от одного MIP map-уровня к другому.

Идея фильтрации состоит в том, что цвет пикселей объекта рассчитывается по соседним точкам текстуры (текселам).

Первым способом фильтрации текстур был так называемый point sampling, который в современной 3D-графике не используется. Следующей была разработана билинейная фильтрация. При билинейной фильтрации для отображения точки поверхности берется взвешенное среднее значение четырех смежных текстурных пикселей. При такой фильтрации качество медленно вращающихся или медленно двигающихся объектов с гранями (типа куба) низкое (размытые грани).

Более высокое качество дает трилинейная фильтрация, при которой для определения цвета пикселя берётся среднее значение цвета восьми текселов, по четыре из двух соседних структур, и в результате семи операций смешивания определяется цвет пикселя.

С ростом производительности графических процессоров была разработана анизотропная фильтрация, которая успешно применяется до сих пор. При определении цвета точки она использует большое количество текселей и учитывает положение полигонов. Уровень анизотропной фильтрации определяется числом текселей, которые обрабатываются при вычислении цвета пикселя: 2х (16 текселей), 4х (32 текселя), 8х (64 текселя), 16х (128 текселей). Данная фильтрация обеспечивает высокое качество выводимого движущегося изображения.

Все эти алгоритмы реализует графический процессор видеокарты.

Интерфейс прикладного программирования (API)

Для ускорения выполнения этапов 3D-конвейера ускоритель трехмерной графики должен обладать определенным набором функций, т.е. аппаратно, без участия центрального процессора, производить операции, необходимые для построения 3D-изображения. Набор этих функций является важнейшей характеристикой 3D-акселератора.

Поскольку 3D-акселератор имеет собственную систему команд, его эффективное применение возможно лишь в том случае, когда прикладная программа использует эти команды. Но, поскольку различных моделей 3D-акселераторов много, так же как и различных прикладных программ, формирующих объемные изображения, возникает проблема совместимости: невозможно написать такую программу, которая бы одинаково хорошо использовала низкоуровневые команды различных акселераторов. Очевидно, что и разработчики прикладного программного обеспечения и производители 3D-акселераторов нуждаются в специальном пакете служебных программ, который выполняет следующие функции:

эффективное преобразование запросов прикладной программы в оптимизированную последовательность низкоуровневых команд 3D-акселератора с учетом особенностей его аппаратного построения;

программную эмуляцию запрошенных функций, если в используемом акселераторе отсутствует их аппаратная поддержка.

Специальный пакет служебных программ для выполнения этих функций называется интерфейсом прикладного программирования (ApplicationProgram Interface = API ).

API занимает промежуточное положение между высокоуровневыми прикладными программами и низкоуровневыми командами акселератора, которые генерируются его драйвером. Использование API избавляет разработчика прикладной программы от необходимости работать с низкоуровневыми командами акселератора, облегчая процесс создания программ.

В настоящее время в 3D существует несколько API, области применения которых довольно четко разграничены:

DirectX , разработанный фирмой Microsoft, используемый в игровых приложениях, работающих под управлением операционных систем Windows 9X и более поздних версий;

OpenGL , используемый в основном в профессиональных приложениях (системы автоматизированного проектирования, системы трехмерного моделирования, тренажеры-симуляторы и т.п.), работающих под управлением операционной системы Windows NT;

Фирменные (native – родные) API , создаваемые производителями 3D-акселераторов исключительно для своих Chipset с целью наиболее эффективного использования их возможностей.

DirectX является жестко регламентированным, закрытым стандартом, который не допускает изменений до выхода в свет своей очередной, новой версии. Это, с одной стороны, ограничивает возможности разработчиков программ и особенно производителей акселераторов, однако значительно облегчает пользователю настройку программного и аппаратного обеспечения для 3D.

В отличие от DirectX, API OpenGL построен на концепции открытого стандарта, имеющего небольшой базовый набор функций и множество расширений, реализующих более сложные функции. Производитель Chipset 3D-акселератора обязан создать BIOS и драйверы, выполняющие базовые функции Open GL, но не обязан обеспечивать поддержку всех расширений. Это порождает ряд проблем, связанных с написанием производителями драйверов для своих изделий, которые поставляются как в полном, так и в усеченном виде.

Полная версия OpenGL-совместимого драйвера носит название ICD (Installable Client Driver – драйвер приложения – клиента). Он обеспечивает максимальное быстродействие, т.к. содержит низкоуровневые коды, обеспечивающие поддержку не только базового набора функций, но и его расширений. Естественно, что с учетом концепции OpenGL создание подобного драйвера исключительно сложный и трудоемкий процесс. Это одна из причин более высокой стоимости профессиональных 3D-акселераторов по сравнению с игровыми.

Не важно, насколько большим и насыщенным будет виртуальный 3D мир. Компьютер может отображать его только одним способом: помещая пиксели на 2D экран. В этой части статьи вы узнаете, как изображение на экране становится реалистичным, и как сцены становятся похожими на те, которые вы видите в реальном мире. Сначала мы посмотрим, как придается реалистичность одному объекту. Потом мы перейдем уже ко всей сцене. И напоследок, мы рассмотрим, как компьютер реализует движение: реалистичные объекты движутся с реалистичными скоростями.

Прежде чем изображение станет реалистичным, объекты проходят несколько стадий обработки. Самые важные стадии это создание формы (shape), обтягивание текстурами, освещение, создание перспективы, глубины резкости (depth of field) и сглаживания (anti-aliasing).

Создание формы

Если мы выглянем в окно, то увидим что все объекты имеют форму, они созданы из прямых и кривых линий разных размеров и положений. Точно также, при взгляде на трехмерную графическую картинку на компьютерном мониторе, мы будем наблюдать изображение, созданное из различных форм, хотя большинство из них состоят уже из прямых линий. Мы видим квадраты, прямоугольники, параллелограммы, круги и ромбы. Но больше всего мы видим треугольников. Для того чтобы составить достоверную картинку с кривыми линиями как в окружающем мире, приходится компоновать форму из множества мелких формочек. Например, человеческое тело может потребовать тысячи этих формочек. Вместе они будут образовывать структуру, называемую каркасом. Каркас очень напоминает эскиз объекта, вы можете легко идентифицировать объект по каркасу. Следующий шаг после создания формы также не менее важен: каркас должен получить поверхность.

На иллюстрации показан каркас руки, изготовленный из малого количества полигонов - всего 862

Поверхностные текстуры (surface textures)

Когда мы встречаем какую-нибудь поверхность в реальном мире, мы можем получить информацию о ней двумя способами. Мы можем посмотреть на поверхность, под разными углами, и можем потрогать ее и определить, мягкая она или твердая. В трехмерной графике мы можем только смотреть на поверхность, получая при этом всю доступную информацию. И эта информация складывается из трех составляющих:

  • Цвет: Какого поверхность цвета? Однородно ли она окрашена?
  • Текстура: Ровная ли поверхность или на ней есть вмятины, бугры, рихтовка или что-то подобное?
  • Отражающая способность: Отражает ли поверхность свет? Четкие ли отражения или они размазаны?

Один из способов придания "реальности" объекту и состоит в подборе комбинации этих трех составляющих в различных частях изображения. Посмотрите вокруг себя: ваша компьютерная клавиатура имеет отличающийся цвет/текстуру/отражающую способность от вашего стола, который в свою очередь отличается цветом/текстурой/отражающей способностью от вашей руки. Для того чтобы цвет изображения был похож на настоящий, важно чтобы компьютер мог выбирать цвет пикселя из палитры в миллионы различных цветов. Разнообразие текстур зависит как от математической модели поверхности (от кожи лягушки до желеобразного материала) так и от карт текстур (texture maps), которые накладываются на поверхности. Также необходимо заложить в объекты те качества, которые нельзя увидеть: мягкость и твердость, теплоту и холод с помощью различных комбинаций цвета, текстуры и отражающей способности. Если ошибиться хотя бы в одном из этих параметров, ощущение реальности мгновенно рассеется.


Добавление поверхности к каркасу начинает изменять
изображение от чего-то математического до картинки,
в которой мы без труда обнаруживаем руку.

Освещение

Когда вы входите в темную комнату, вы включаете свет. Вы не задумываетесь, как же свет, выходя из лампочки, распределяется по всей комнате. Но при разработке 3D графики необходимо постоянно это учитывать, потому что все поверхности, окружающие каркас, должны быть откуда-нибудь освещены. Один метод, называемый методом бегущего луча (ray-tracing), вычерчивает путь, который воображаемый луч пройдет после выхода из лампы, отражения от зеркальных поверхностей и который, в конце концов, закончится на предмете. Луч осветит его с различной интенсивностью под различными углами. Метод кажется достаточно сложным даже при построении лучей от одной лампы, но в большинстве комнат существует множество источников света: несколько ламп, окон, свечей и т.д.

Освещение играет ключевую роль в двух эффектах, придающих ощущение веса и цельности объектам: затенения (shading) и тени (shadow). Первый эффект затенения заключается в изменении интенсивности освещения объекта от одной его стороны к другой. Благодаря затенению шар выглядит круглым, высокие скулы выпирают на лице, а одеяло кажется объемным и мягким. Эти различия в интенсивности света совместно с формой усиливают иллюзию, что объект кроме высоты и ширины имеет еще и глубину. Иллюзия веса создается вторым эффектом: тенью.


Подсветка изображения не только добавляет глубину
объекту через затенение, но и "привязывает"
объект к земле посредством тени.

Оптически плотные тела при освещении отбрасывают тень. Вы можете увидеть тень на солнечных часах или посмотреть на тень дерева на тротуаре. В настоящем мире объекты и люди отбрасывают тени. Если в трехмерном мире будут присутствовать тени, то вам будет еще больше казаться, что вы смотрите через окно на настоящий мир, а не на экран с математическими моделями.

Перспектива

Слово перспектива кажется техническим термином, но на самом деле оно описывает простейший эффект, который все мы наблюдаем. Если вы встанете на обочину длинной прямой дороги и посмотрите вдаль, то вам покажется что правая и левая полоса дороги сходятся в точку на горизонте. Если по обочине посажены деревья, то чем дальше деревья находятся от наблюдателя, тем они меньше. Вы заметите, что деревья сходятся в ту же точку на горизонте, что и дорога. Если все объекты на экране будут сходиться в одну точку, то это и будет называться перспективой. Бывают, конечно, и другие варианты, но в основном в трехмерной графике используется перспектива одной точки, описанная выше.

На приведенной иллюстрации руки выглядят разделенными, но на большинстве сцен одни объекты находятся впереди и частично блокируют вид на другие объекты. Для таких сцен программное обеспечение должно не только просчитать относительный размер объектов, но и учитывать информацию, какие объекты закрывают другие и насколько сильно. Наиболее часто для этого используется Z-буфер (Z-Buffer). Свое имя этот буфер получил от названия оси Z, или воображаемой линии, идущей за экран через сцену к горизонту. (Две другие оси - это ось X, измеряющая ширину сцены, и ось Y, измеряющая высоту сцены).

Z-буфер присваивает каждому полигону номер в зависимости от того, насколько близко к переднему краю сцены располагается объект, содержащий этот полигон. Обычно меньшие номера присваиваются ближайшим к экрану полигонам, а большие номера - полигонам, примыкающим к горизонту. Например, 16-битный Z-буфер присвоит ближайшему к экрану объекту номер -32.768, а самому удаленному - 32.767.

В настоящем мире, наши глаза не могут видеть объекты закрытые другими, поэтому у нас нет проблем в определении видимых объектов. Но эти проблемы постоянно возникают перед компьютером, и он вынужден непосредственно их решать. При создании каждого объекта, его Z-значение сравнивается со значением других объектов, занимающих те же области по координатам X и Y. Объект с самым маленьким Z-значением будет полностью прорисовываться, другие же объекты с большими значениями будут прорисованы лишь частично. Таким образом, мы не видим фоновых объектов, выступающих через персонажей. Так как Z-буфер задействуется перед полной прорисовкой объектов, скрытые за персонажа части сцены не будут прорисовываться вообще. Это ускоряет графическую производительность.

Глубина резкости

Другой оптический эффект, глубина резкости, также успешно используется в 3D графике. Будем использовать тот же пример с деревьями, посаженными по обочине дороги. По мере удаления деревьев от наблюдателя будет происходить другой интересный эффект. Если вы посмотрите на ближайшие к вам деревья, то удаленные деревья будут не в фокусе. Особенно это видно при просмотре фотографии или видеоролика с теми же деревьями. Режиссеры и компьютерные аниматоры используют этот эффект в двух целях. Первая состоит в усилении иллюзии глубины наблюдаемой сцены. Конечно же, компьютер может прорисовывать каждый объект сцены точно в фокусе, независимо от его удаления. Но так как в реальном мире эффект глубины резкости всегда присутствует, то прорисовка всех предметов в фокусе приведет к нарушению иллюзии реальности сцены.

Вторая причина использования этого эффекта заключается в привлечении вашего внимания к нужным предметам или актерам. Например, для усиления вашего внимания к герою фильма, режиссер будет использовать эффект малой глубины резкости (shallow depth of field), когда только один актер будет находиться в фокусе. С другой стороны, сцены, которые должны потрясти вас величием природы, используют эффект большой глубины резкости (deep depth of field) чтобы дать как можно больше предметов в фокусе.

Сглаживание (anti-aliasing)

Сглаживаение - это еще одна технология, призванная обмануть зрение. Цифровые графические системы очень хороши для создания вертикальных или горизонтальных линий. Но когда появляются диагонали и кривые (а они появляются очень часто в реальном мире), компьютер прорисовывает линии с характерными "лесенками" вместо ровных краев. Чтобы убедить ваши глаза в том, что они видят гладкую линию или кривую, компьютер добавляет вокруг линии пиксели с различными оттенками цвета линии. Эти "серые" пиксели создают иллюзию отсутствия "ступенек". Такой процесс добавления пикселей для обмана зрения называется сглаживанием, и он является одной из технологий, отличающих компьютерную 3D графику от "ручной" графики. Задачи сохранения линий и добавления нужного количества "сглаживающих" цветов являются еще одним сложным делом для компьютера при создании 3D анимации на вашем дисплее.

Трехмерная графика сегодня прочно вошла в нашу жизнь, что порой мы даже не обращаем внимания на ее проявления.

Разглядывая рекламный щит с изображением интерьера комнаты или рекламный ролик о мороженном, наблюдая за кадрами остросюжетного фильма, мы и не догадываемся, что за всем этим стоит кропотливая работа мастера 3d графики.

Трехмерная графика это

3D графика (трехмерная графика) - это особый вид компьютерной графики - комплекс методов и инструментов, применяемых для создания изображений 3д-объектов (трехмерных объектов).

3д-изображение не сложно отличить от двумерного, так как оно включает создание геометрической проекции 3d-модели сцены на плоскость, при помощи специализированных программных продуктов. Получаемая модель может быть объектом из реальной действительности, например модель дома, автомобиля, кометы, или же быть абсолютно абстрактной. Процесс построения такой трехмерной модели получил название и направлен, прежде всего, на создание визуального объемного образа моделируемого объекта.

Сегодня на основе трехмерной графики можно создать высокоточную копию реального объекта, создать нечто новое, воплотить в жизнь самые нереальные дизайнерские задумки.

3d технологии графики и технологии 3d печати проникли во многие сферы человеческой деятельности, и приносят колоссальную прибыль.

Трехмерные изображения ежедневно бомбардируют нас на телевидении, в кино, при работе с компьютером и в 3D играх, с рекламных щитов, наглядно представляя всю силу и достижения 3д-графики.

Достижения современного 3д графики используются в следующих отраслях

  1. Кинематограф и мультипликация - создание трехмерных персонажей и реалистичных спецэффектов. Создание компьютерных игр - разработка 3d-персонажей, виртуальной реальности окружения, 3д-объектов для игр.
  2. Реклама - возможности 3d графики позволяют выгодно представить товар рынку, при помощи трехмерной графики можно создать иллюзию кристально-белоснежной рубашки или аппетитного фруктового мороженного с шоколадной стружкой и т.д. При этом в реального рекламируемый товар может иметь немало недостатков, которые легко скрываются за красивыми и качественными изображениями.
  3. Дизайн интерьеров - проектирование и разработка дизайна интерьера также не обходятся сегодня без трехмерной графики. 3d технологии дают возможность создать реалистичные 3д-макеты мебели (дивана, кресла, стула, комода и т.д.), точно повторяя геометрию объекта и создавая имитацию материала. При помощи трехмерной графики можно создать ролик, демонстрирующий все этажи проектируемого здания, который возможно еще даже не начал строиться.

Этапы создания трехмерного изображения


Для того чтобы получить 3д-изображение объекта необходимо выполнить следующие шаги

  1. Моделирование - построение математической 3д-модели общей сцены и ее объектов.
  2. Текстурирование включает наложение текстур на созданные модели, настройка материалов и придание моделям реалистичности.
  3. Настройка освещения .
  4. (движущихся объектов).
  5. Рендеринг - процесс создания изображения объекта по предварительно созданной модели.
  6. Композитинг или компоновка - постобработка полученного изображения.

Моделирование - создание виртуального пространства и объектов внутри него, включает создание различных геометрий, материалов, источников света, виртуальных камер, дополнительных спецэффектов.

Наиболее распространенными программными продуктами для 3d моделирования являются: Autodesk 3D max, Pixologic Zbrush, Blender.

Текстурирование представляет собой наложение на поверхность созданной трехмерной модели растрового или векторного изображения, позволяющего отобразить свойства и материал объекта.


Освещение
- создание, установка направления и настройка источников освещения в созданной сцене. Графические 3д-редакторы, как правило, используют следующие виды источников света: spot light (расходящиеся лучи), omni light (всенаправленный свет), directional light (параллельные лучи) и др. Некоторые редакторы дают возможность создания источника объемного свечения (Sphere light).

Представить, как впишется объект в существующую застройку. Просматривать различные варианты исполнения проекта очень удобно по трехмерной модели. В частности, можно менять материалы и покрытие (текстуры) элементов проекта, проверять освещенность отдельных участков (в зависимости от времени суток), размещать различные элементы интерьера и т.д.

В отличие от ряда САПР, использующих для визуализации и анимации дополнительные модули или сторонние программы, в MicroStation встроены средства для создания фотореалистичных изображений (BMP, JPG, TIFF, PCX и др.), а также для записи анимационных роликов стандартных форматов (FLI, AVI) и набора покадровых картинок (BMP, JPG, TIFF и др.).

Создание реалистичных изображений

Создание фотореалистичных изображений начинается с присвоения материалов (текстур) различным элементам проекта. Каждая текстура применяется ко всем элементам одинакового цвета, лежащим в одном и том же слое. Учитывая, что максимальное количество слоев — 65 тыс., а цветов — 256, можно предположить, что индивидуальный материал реально применить к любому элементу проекта.

Программа предоставляет возможности редактирования любой текстуры и создания новой, основанной на растровом изображении (BMP, JPG, TIFF и др.). При этом для текстуры можно использовать два изображения, одно из которых отвечает за рельефность, а другое — за фактуру материала . Как рельефность, так и фактура обладают различными параметрами размещения на элемент, как-то: масштаб, угол поворота, смещение, способ заполнения неровных поверхностей. Кроме того, рельефность имеет параметр «высота» (изменяемый в диапазоне от 0 до 20), а фактура, в свою очередь, обладает весом (изменяемым в диапазоне от 0 до 1).

Кроме рисунка, у материала существуют следующие настраиваемые параметры: рассеяние, диффузия, глянец, полировка, прозрачность, отражение, преломление, базовый цвет, цвет блика, способность материала оставлять тени.

Отображение текстуры предварительно можно просмотреть на примере стандартных трехмерных тел либо на любом элементе проекта, при этом можно использовать несколько типов затенения элемента. Простые средства создания и редактирования текстур позволяют получить практически любой материал.

Не менее важный аспект для создания реалистических изображений — способ визуализации (рендеринга). MicroStation поддерживает следующие, достаточно известные способы затенения: удаление невидимых линий, закраска невидимых линий, постоянное затенение, плавное затенение, затенение по Фонгу, рейтрейсинг, радиосити, трассировка частиц. При визуализации изображение можно сгладить (убрать ступенчатость), а также создать стереокартинку, которую можно просмотреть, используя очки со специальными светофильтрами.

Существует ряд настроек качества отображения (соответственно скорости обработки изображения) для способов рейтрейсинга, радиосити, трассировки частиц. Для ускорения обработки графической информации MicroStation поддерживает методы графического ускорения — технологию QuickVision. Для просмотра и редактирования созданных изображений также существуют встроенные средства модификации, поддерживающие следующие стандартные функции (которые, конечно, не могут конкурировать с функциями специализированных программ): гамма-коррекция, регулировка оттенков, негатив, размывка, цветовой режим, обрезка, изменение размера, поворот, зеркальное отображение, конвертация в иной формат данных.

При создании реалистичных картинок немалую часть времени занимают размещение и управление источниками света. Источники света подразделяются на глобальное и местное освещение . Глобальное освещение , в свою очередь, состоит из рассеянного света, вспышки, солнечного освещения, света неба. А для солнца, наряду с яркостью и цветом, устанавливается угол азимута и угол над горизонтом. Данные углы могут автоматически вычисляться по указанному географическому положению объекта (в любой указанной на карте мира точке земного шара), а также по дате и времени рассмотрения объекта. Свет неба зависит от облачности, качества (непрозрачности) воздуха и даже от отражения от земли.

Местные источники света могут быть пяти видов: удаленный, точечный, конический, поверхностный, проем для неба. Каждый источник может обладать следующими свойствами: цвет, сила света, интенсивность, разрешение, тень, ослабление на определенном расстоянии, угол конуса и т.д.

Источники света могут помочь в определении неосвещенных участков объекта, где необходимо ставить дополнительные освещение.

Для просмотра элементов проекта с определенного ракурса и для произвольного движения вида по всему файлу используются камеры. При помощи клавиш управления клавиатуры и мышки можно задать девять типов движения камеры: полет, поворот, снижение, скольжение, обход, вращение, плавание, перемещение на тележке, наклон. По четыре различных типа движения можно подключить на клавиатуру и мышь (переключаются режимы удерживанием клавиш Shift, Ctrl, Shift + Ctrl).

Камеры дают возможность осмотреть объект с разных ракурсов и заглянуть внутрь. Варьируя параметры камеры (фокусное расстояние, угол объектива), можно изменять перспективу вида.

Для создания более реалистичных изображений предусмотрена возможность подключения фонового рисунка, например фотоснимка существующего ландшафта .

mob_info