Сколько мегабайт в одном гигабайте или как правильно переводить единицы измерения памяти? Гигабит 1 гигабит сколько.

Термины, обозначающие скорость Интернета, крайне сложно понять человеку, который от этой темы далек. Например, предлагает провайдер услугу предоставления Интернета на скорости 1 мбит/сек, а вы и не знаете, много это или мало. Давайте разбираться, что это - mbps, и как вообще измеряется скорость интернет-соединения.

Расшифровка аббревиатуры

"mbps" (mbit per second ) - мегабит в секунду. Именно в этих единицах чаще всего и измеряется скорость соединения. Все провайдеры в своих рекламных объявлениях указывают скорость в мегабитах в секунду, поэтому и нам стоить разбираться именно с этими величинами.

Сколько это - 1 mbps?

Для начала отметим, что 1 бит является самой маленькой единицей для измерения объема информации. Наравне с битом, люди часто используют байт, забывая о том, что эти два понятия совершенно разные. Иногда они говорят "байт", имея в виду "бит", и наоборот. Поэтому стоит рассмотреть этот вопрос детальнее.

Итак, 1 бит - наименьшая единица измерения. 8 бит равно одному байту, 16 бит - двум байтам и т. д. То есть нужно просто запомнить, что байт всегда в 8 раз больше бита.

Учитывая, что обе единицы очень маленькие, для них в большинстве случаев используют приставки "мега", "кило" и "гига". Что эти приставки означают, вам должно быть известно из школьного курса. Но если вы забыли, то стоит напомнить:

  1. "Кило" - умножение на 1 000. 1 килобит равен 1 000 битам, 1 килобайт равен 1024 байтам.
  2. "Мега" - умножение на 1 000 000. 1 мегабит равен 1 000 килобитам (или 1 000 000 битам), 1 мегабайт равен 1024 килобайтам.
  3. "Гига" - умножение на 1 000 000 000. равен 1 000 мегабитам (или 1 000 000 000 битам), 1 гигабайт равен 1024 мегабайтам.

Если говорить простыми словами, то скорость подключения - это скорость отправляемой и получаемой информации компьютером в одну единицу времени (в секунду). Если указана скорость вашего интернет-соединения 1 mbps, что это значит? В данном случае это говорит о том, что скорость вашего Интернета составляет 1 мегабит в секунду или 1 000 килобит/секунду.

Насколько это много

Многие пользователи полагают, что mbps - это много. На самом деле это не так. Современные сети настолько развиты, что с учетом их возможностей, 1 mbps - это вообще ничто. Приведем расчет такой скорости на примере скачивания файлов из Интернета.

Учитываем, что mbps - это мегабиты в секунду. Поделим значение 1 на 8 и получим мегабайты. Итого 1/8=0,125 мегабайт/секунду. Если мы захотим скачать из Интернета музыку, то при условии, что один трек "весит" 3 мегабайта (обычно треки столько и "весят"), мы сможем его скачать за 24 секунды. Посчитать несложно: 3 мебагайта (вес одного трека) нужно поделить на 0,125 мегабайт/секунду (наша скорость). Результат - 24 секунды.

Но это касается только обычной песни. А если вы хотите загрузить какой-нибудь фильм, величиной в 1,5 Гб? Давайте считать:

  • 1500 (мегабайт) : 0,125 (мегабайт в секунду) = 12 000 (секунд) .

Переводим секунды в минуты:

  • 12 000: 60 = 200 минут или 3,33 часа .

Таким образом, при скорости Интернета 1 mbps мы сможем скачать фильм, объемом 1,5 Гб за 3,33 часа. Здесь уже сами судите, долго это или нет.

Учитывая тот факт, что в крупных городах интернет-провайдеры предлагают скорость интернета до 100 mbps, мы бы смогли загрузить фильм с таким же объемом всего за 2 минуты, а не за 200. То есть в 100 раз быстрее. Если отталкиваться от этого, то можно прийти к выводу, что mbps - это низкая скорость.

Впрочем, все относительно. В какой-нибудь глухой деревне, где вообще сложно поймать даже GSM-сеть, иметь Интернет с такой скоростью - это круто. Однако в большом мегаполисе с огромной конкуренцией между провайдерами и мобильными операторами такого слабого интернет-соединения быть не может.

Заключение

Теперь вы знаете, как определять скорость Интернета, и немного сможете разбираться данных единицах измерения. Конечно, запутаться в них - раз плюнуть, но главное запомнить, что бит - это восьмая часть байта. А приставки "кило", "мега" и "гига" лишь прибавляют три, шесть или девять нулей, соответственно. Если это понимать, то все становится на свои места.

В сегодняшней статье мы займемся измерением информации. Все картинки, звуки и видео ролики, которые мы с вами видим на экранах мониторов, представляют собой не более чем цифры. И эти цифры можно измерить, и, сейчас, вы научитесь переводить мегабиты в мегабайты и мегабайты в гигабайты.

Если вам важно знать, сколько в 1 гб мб или сколько в 1 мб кб, то эта статья для вас. Чаще всего такие данные нужны программистам, оценивающим занимаемый их программами объем, но, иногда, не мешает и рядовым пользователям для оценки размера скачиваемых или хранимых данных.

Если вкратце, то достаточно знать это:

1 байт = 8 бит

1 килобайт = 1024 байта

1 мегабайт = 1024 килобайта

1 гигабайт = 1024 мегабайта

1 терабайт = 1024 гигабайта

Общепринятые сокращения: килобайт=кб, мегабайт=мб, гигабайт=гб.

Недавно я получил вопрос от моего читателя: «Что больше кб или мб?». Надеюсь, теперь, ответ на него знает каждый.

Единицы измерения информации в подробностях

В информационно мире применяется не привычная для нас, десятеричная система измерения, а двоичная. Это значит, что одна цифра может принимать значение не от 0 до 9, а от 0 до 1.

Простейшей единицей измерения информации является 1 бит, он может быть равен 0 или 1. Но эта величина очень мала для современного объема данных, поэтому используют биты редко. Чаще применяют байты, 1 байт равен 8 бит и может принимать значение от 0 до 15 (шестнадцатеричная система исчисления). Правда вместо чисел 10-15 применяются буквы от А до F.

Но и эти объемы данных невелики, поэтому применяются привычные всем приставки кило- (тысяча), мега-(миллион), гига-(миллиард).

Стоит отметить, что в инфомире, килобайт равен не 1000 байт, а 1024. И если вы хотите узнать, сколько килобайт в мегабайте, то вы тоже получите число 1024. На вопрос, сколько мегабайт в гигабайте вы услышите тот же ответ – 1024.

Определяется это также особенностью двоичной системы исчисления. Если, при использовании десятков, каждый новый разряд мы получаем умножением на 10 (1, 10, 100, 1000 и т.д.), то в двоичной системе новый разряд появляется после умножения на 2.

Это выглядит вот так:

2, 4, 8, 16, 32, 64, 128, 256, 512, 1024

Число, состоящее из 10 цифр двоичной системы, может иметь всего лишь 1024 значения. Это больше чем 1000, но ближе всего к привычной приставке кило-. Аналогичным образом применяются и мега- и гига и тера-.

Я не очень торопился перевести свою домашнюю сеть со скорости 100 Мбит/с на 1 Гбит/с, что для меня довольно странно, поскольку я передаю по сети большое количество файлов. Однако когда я трачу деньги на апгрейд компьютера или инфраструктуры, я считаю, что должен сразу же получить прирост производительности в приложениях и играх, которые я запускаю. Многие пользователи любят потешить себя новой видеокартой, центральным процессором и каким-нибудь гаджетом. Однако по каким-то причинам сетевое оборудование не привлекает такого энтузиазма. Действительно, сложно вложить заработанные деньги в сетевую инфраструктуру вместо очередного технологического подарка на день рождения.

Однако требования по пропускной способности у меня очень высоки, и в один момент я понял, что инфраструктуры на 100 Мбит/с уже не хватает. У всех моих домашних компьютеров уже установлены интегрированные адаптеры на 1 Гбит/с (на материнских платах), поэтому я решил взять прайс-лист ближайшей компьютерной фирмы и посмотреть, что мне потребуется для перевода всей сетевой инфраструктуры на 1 Гбит/с.

Нет, домашняя гигабитная сеть вовсе не такая сложная.

Я купил и установил всё оборудование. Я помню, что раньше на копирование большого файла по 100-Мбит/с сети уходило около полутора минут. После апгрейда на 1 Гбит/с тот же файл стал копироваться за 40 секунд. Прирост производительности приятно порадовал, но всё же я не получил десятикратного превосходства, которое можно было ожидать из сравнения пропускной способности 100 Мбит/с и 1 Гбит/с старой и новой сетей.

В чём причина?

Для гигабитной сети все её части должны поддерживать 1 Гбит/с. Например, если у вас установлены гигабитные сетевые карты и соответствующие кабели, но концентратор/коммутатор поддерживает всего 100 Мбит/с, то и вся сеть будет работать на 100 Мбит/с.

Первое требование - сетевой контроллер. Лучше всего, если каждый компьютер в сети будет оснащён гигабитным сетевым адаптером (отдельным или интегрированным на материнскую плату). Это требование удовлетворить проще всего, поскольку большинство производителей материнских плат пару последних лет интегрируют гигабитные сетевые контроллеры.

Второе требование - сетевая карта тоже должна поддерживать 1 Гбит/с. Есть распространённое заблуждение, что для гигабитных сетей требуется кабель категории 5e, но на самом деле даже старый кабель Cat 5 поддерживает 1 Гбит/с. Впрочем, кабели Cat 5e обладают лучшими характеристиками, поэтому они будут более оптимальным решением для гигабитных сетей, особенно если длина у кабелей будет приличная. Впрочем, кабели Cat 5e сегодня всё равно самые дешёвые, поскольку старый стандарт Cat 5 уже устарел. Новые и более дорогие кабели Cat 6 обладают ещё лучшими характеристиками для гигабитных сетей. Мы сравним производительность кабелей Cat 5e против Cat 6 чуть позже в нашей статье.

Третий и, наверное, самый дорогой компонент в гигабитной сети - это концентратор/коммутатор с поддержкой 1 Гбит/с. Конечно, лучше использовать коммутатор (возможно, в паре с маршрутизатором), поскольку концентратор или хаб - не самое интеллектуальное устройство, просто транслирующее все сетевые данные по всем доступным портам, что приводит к появлению большого числа коллизий и замедляет производительность сети. Если вам нужна высокая производительность, то без гигабитного коммутатора не обойтись, поскольку он перенаправляет сетевые данные только на нужный порт, что эффективно увеличивает скорость работы сети по с равнению с концентратором. Маршрутизатор обычно содержит встроенный коммутатор (с несколькими портами LAN), а также позволяет подключать вашу домашнюю сеть к Интернету. Большинство домашних пользователей понимают преимущества маршрутизатора, поэтому гигабитный маршрутизатор - вариант вполне привлекательный.

Насколько быстрым должен быть гигабит? Если вы слышите префикс "гига", то наверняка подразумеваете 1000 мегабайт, при этом гигабитная сеть должна обеспечивать 1000 мегабайт в секунду. Если вы так считаете, то вы не одиноки. Но, увы, в действительности всё иначе.

Что же такое гигабит? Это 1000 мегабит, а не 1000 мегабайт. В одном байте 8 битов, поэтому просто посчитаем: 1 000 000 000 битов разделить на 8 битов = 125 000 000 байтов. В мегабайте около миллиона байтов, поэтому гигабитная сеть должна обеспечивать теоретическую максимальную скорость передачи данных около 125 Мбайт/с.

Конечно, 125 Мбайт/с звучит не так впечатляюще, как гигабит, но подумайте: сеть с такой скоростью должна теоретически передавать гигабайт данных всего за восемь секунд. А 10-Гбайт архив должен передаваться всего за минуту и 20 секунд. Скорость невероятная: просто вспомните, сколько времени уходило на передачу гигабайта данных до того момента, как USB-брелоки стали такими быстрыми, как сегодня.

Ожидания были серьёзными, поэтому мы решили передать файл по гигабитной сети и насладиться скоростью близкой к 125 Мбайт/с. У нас нет какого-либо специализированного чудесного оборудования: простая домашняя сеть с некоторыми старыми, но приличными технологиями.

Копирование 4,3-Гбайт файла с одного домашнего компьютера на другой выполнялось со средней скоростью 35,8 Мбайт/с (мы проводили тест пять раз). Это всего лишь 30% от теоретического потолка гигабитной сети 125 Мбайт/с.

В чём же причины проблемы?

Подобрать компоненты для установки гигабитной сети довольно просто, но вот заставить сеть работать на максимальной скорости намного сложнее. Факторы, которые могут привести к замедлению сети, довольно многочисленны, но как мы обнаружили, всё упирается в то, насколько быстро жёсткие диски способны передавать данные на сетевой контроллер.

Первое ограничение, которое нужно учитывать - интерфейс гигабитного сетевого контроллера с системой. Если ваш контроллер подключён через старую шину PCI, то количество данных, которое она теоретически может передать, составляет 133 Мбайт/с. Для пропускной способности 125 Мбайт/с у Gigabit Ethernet этого кажется достаточным, но помните, что пропускная способность шины PCI распределяется по всей системе. Каждая дополнительная карта PCI и многие системные компоненты будут использовать ту же самую пропускную способность, что снижает ресурсы, доступные сетевой карте. У контроллеров с новым интерфейсом PCI Express (PCIe) таких проблем нет, поскольку каждая линия PCIe обеспечивает, как минимум 250 Мбайт/с пропускной способности, причём эксклюзивно для устройства.

Следующий важный фактор, который влияет на скорость сети - кабели. Многие специалисты указывают на то, что в случае прокладки сетевых кабелей рядом с кабелями питания, являющимися источниками помех, низкие скорости гарантированы. Большая длина кабелей тоже проблемная, поскольку медные кабели Cat 5e сертифицированы под максимальную длину 100 метров.

Некоторые специалисты рекомендуют прокладывать кабели нового стандарта Cat 6 вместо Cat 5e. Часто такие рекомендации оправдать сложно, но мы попытаемся протестировать влияние категории кабеля на маленькую гигабитную домашнюю сеть.

Не будем забывать и про операционную систему. Конечно, в гигабитном окружении эта система используется довольно редко, но следует упомянуть, что Windows 98 SE (и старые операционные системы) не смогут использовать преимущества гигабитного Ethernet, поскольку стек TCP/IP этой операционной системы едва умеет нагружать 100-Мбит/с соединение в полной мере. Windows 2000 и более свежие версии Windows уже подойдут, хотя в старых операционных системах придётся выполнить некоторые настройки, чтобы они использовали сеть по максимуму. Мы будем использовать 32-битную ОС Windows Vista для наших тестов, и хотя у Vista в каких-то задачах репутация не самая лучшая, эта система поддерживает гигабитную сеть с самого начала.

Теперь перейдём к жёстким дискам. Даже старого интерфейса IDE со спецификацией ATA/133 должно быть достаточно для поддержки теоретической скорости передачи файлов 133 Мбайт/с, а более новая спецификация SATA соответствует всем требованиям, поскольку она обеспечивает, как минимум, пропускную способность 1,5 Гбит/с (150 Мбайт/с). Однако если кабели и контроллеры могут справляться с передачей данных на такой скорости, сами жёсткие диски - нет.

Возьмём для примера типичный современный жёсткий диск на 500 Гбайт, который должен обеспечивать постоянную пропускную способность около 65 Мбайт/с. В начале пластин (внешние дорожки) скорость может быть выше, однако по мере перехода на внутренние дорожки пропускная способность падает. Данные на внутренних дорожках считываются медленнее, на скорости около 45 Мбайт/с.

Нам казалось, что мы рассмотрели все возможные "узкие места". Что оставалось делать? Нужно было провести несколько тестов и посмотреть, сможем ли мы добраться по производительности сети до теоретического предела 125 Мбайт/с.

Тестовая конфигурация

Тестовые системы Серверная система Клиентская система
CPU Intel Core 2 Duo E6750 (Conroe), 2,66 ГГц, FSB-1333, кэш 4 Мбайт Intel Core 2 Quad Q6600 (Kentsfield), 2,7 ГГц, FSB-1200, кэш 8 Мбайт
Материнская плата ASUS P5K, Intel P35, BIOS 0902 MSI P7N SLI Platinum, Nvidia nForce 750i, BIOS A2
Сеть Встроенный контроллер Abit Gigabit LAN Встроенный контроллер nForce 750i Gigabit Ethernet
Память Wintec Ampo PC2-6400, 2x 2048 Мбайт, DDR2-667, CL 5-5-5-15 на 1,8 В A-Data EXTREME DDR2 800+, 2x 2048 Мбайт, DDR2-800, CL 5-5-5-18 на 1,8 В
Видеокарты ASUS GeForce GTS 250 Dark Knight, 1 Гбайт GDDR3-2200, 738 МГц GPU, 1836 МГц блок шейдеров MSI GTX260 Lightning, 1792 Мбайт GDDR3-1998, 590 МГц GPU, 1296 МГц блок шейдеров
Жёсткий диск 1 Seagate Barracuda ST3320620AS, 320 Гбайт, 7200 об/мин, кэш 16 Мбайт, SATA 300
Жёсткий диск 2 2x Hitachi Deskstar 0A-38016 в RAID 1, 7200 об/мин, кэш 16 Мбайт, SATA 300 Western Digital Caviar WD50 00AAJS-00YFA, 500 Гбайт, 7200 об/мин, кэш 8 Мбайт, SATA 300
Блок питания Aerocool Zerodba 620w, 620 Вт, ATX12V 2.02 Ultra HE1000X, ATX 2.2, 1000 Вт
Сетевой коммутатор D-Link DGS-1008D, 8-Port 10/100/1000 Unmanaged Gigabit Desktop Switch
ПО и драйверы
ОС Microsoft Windows Vista Ultimate 32-bit 6.0.6001, SP1
Версия DirectX DirectX 10
Графический драйвер Nvidia GeForce 185.85

Тесты и настройки

Тесты и нстройки
Nodesoft Diskbench Version: 2.5.0.5, file Copy, Creation, Read, and Batch Benchmark
SiSoftware Sandra 2009 SP3 Version 2009.4.15.92, CPU Test = CPU Arithmetic / Multimedia, Memory Test = Bandwidth Benchmark

Перед тем, как мы перейдём к любым тестам, мы решили протестировать жёсткие диски без использования сети, чтобы посмотреть, какую пропускную способность мы можем ожидать в идеальном сценарии.

В нашей домашней гигабитной сети работают два ПК. Первый, который мы будем называть сервером, оснащён двумя дисковыми подсистемами. Основной жёсткий диск - 320-Гбайт Seagate Barracuda ST3320620AS возрастом пару лет. Сервер работает в качестве сетевого хранилища NAS с RAID-массивом, состоящим из двух 1-Тбайт жёстких дисков Hitachi Deskstar 0A-38016, которые зеркалированы для избыточности.

Второй ПК в сети мы назвали клиентом, у него два жёстких диска: оба 500-Гбайт Western Digital Caviar 00AAJS-00YFA возрастом около полугода.

Сначала мы протестировали скорость системных жёстких дисков сервера и клиента, чтобы посмотреть, какую производительность мы можем от них ожидать. Мы использовали тест жёсткого диска в пакете SiSoftware Sandra 2009.

Наши мечты о достижении гигабитной скорости передачи файлов сразу же рассеялись. Оба из одиночных жёстких дисков достигли максимальной скорости чтения около 75 Мбайт/с в идеальных условиях. Поскольку данный тест проводится в реальных условиях, а накопители заполнены на 60%, то мы можем ожидать скорости чтения ближе к индексу 65 Мбайт/с, который мы получили у обоих жёстких дисков.

Но давайте посмотрим на производительность RAID 1 - самое хорошее у данного массива в том, что аппаратный RAID-контроллер может увеличивать производительность чтения, получая данные с обоих жёстких дисков одновременно, аналогично массивам RAID 0; но данный эффект получается (насколько мы знаем) только с аппаратными RAID-контроллерами, но не с программными решениями RAID. В наших тестах массив RAID обеспечил намного более высокую производительность чтения, чем один жёсткий диск, поэтому велики шансы того, что мы получим высокую скорость передачи файлов по сети с массива RAID 1. Массив RAID обеспечил впечатляющую пиковую пропускную способность 108 Мбайт/с, но в реальности производительность должна быть близка к индексу 88 Мбайт/с, поскольку массив заполнен на 55%.

Поэтому мы должны получить около 88 Мбайт/с по гигабитной сети, не так ли? Это не так близко к потолку гигабитной сети 125 Мбайт/с, но намного быстрое 100-Мбит/с сетей, у которых потолок составляет 12,5 Мбайт/с, так что получить 88 Мбайт/с на практике было бы совсем неплохо.

Но не всё так просто. То, что скорость чтения с жёстких дисков довольно высока, вовсе не означает, что они будут быстро записывать информацию в реальных условиях. Давайте проведём несколько тестов записи на диски до использования сети. Мы начнём с нашего сервера и скопируем 4,3-Гбайт образ со скоростного массива RAID на 320-Гбайт системный жёсткий диск и обратно. Затем мы скопируем файл с клиентского диска D: на его диск C:.

Как видим, копирование с быстрого массива RAID на диск C: дало среднюю скорость всего 41 Мбайт/с. А копирование с диска C: на массив RAID 1 привело к снижению до всего 25 Мбайт/с. Что происходит?

Именно так и случается в реальности: жёсткий диск C: выпущен чуть больше года назад, но он заполнен на 60%, вероятно, немного фрагментирован, так что по записи он рекордов не бьёт. Есть и другие факторы, а именно, насколько быстро работает система и память в целом. Массив RAID 1 составлен из относительного нового "железа", но из-за избыточности информацию нужно записывать на два жёстких диска одновременно, что снижает производительность. Хотя массив RAID 1 может дать высокую производительность чтения, скоростью записи придётся пожертвовать. Конечно, мы могли использовать массив RAID 0 с чередованием, который даёт высокую скорость записи и чтения, но если один жёсткий диск "умрёт", то вся информация будет испорчена. В целом, RAID 1 является более правильным вариантом, если для вас ценны данные, хранящиеся на NAS.

Впрочем, не всё потеряно. Новый 500-Гбайт накопитель Digital Caviar способен записывать наш файл со скоростью 70,3 Мбайт/с (средний результат по пяти тестовым прогонам), а также даёт максимальную скорость 73,2 Мбайт/с.

С учётом всего сказанного мы ожидали получить в реальных условиях максимальную скорость передачи по гигабитной сети 73 Мбайт/с с массива NAS RAID 1 на диск C: клиента. Мы также протестируем передачу файлов с клиентского диска C: на серверный диск C: чтобы узнать, можем ли мы реалистично ожидать 40 Мбайт/с в этом направлении.

Начнём с первого теста, в рамках которого мы отсылали файл с клиентского диска C: на диск C: сервера.

Как видим, результаты соответствуют нашим ожиданиям. Гигабитная сеть, способная в теории дать 125 Мбайт/с, отсылает данные с клиентского диска C: с максимально возможной скоростью, вероятно, в районе 65 Мбайт/с. Но, как мы показали выше, серверный диск C: может записывать только со скоростью около 40 Мбайт/с.

Теперь давайте скопируем файл со скоростного RAID-массива сервера на диск C: клиентского компьютера.

Всё оказалось так, как мы и предполагали. Из наших тестов мы знаем, что диск C: клиентского компьютера способен записывать данные со скоростью около 70 Мбайт/с, и производительность гигабитной сети оказалась очень близка к данной скорости.

К сожалению, полученные нами результаты и близко не подходят к теоретической максимальной пропускной способности 125 Мбайт/с. Можем ли мы протестировать предельную скорость работы сети? Конечно, но не в реалистичном сценарии. Мы попытаемся передать информацию по сети из памяти в память, чтобы обойти любые ограничения жёстких дисков по пропускной способности.

Для этого мы создадим 1-Гбайт RAM-диск на серверном и клиентском ПК, после чего передадим 1-Гбайт файл между этими дисками по сети. Поскольку даже медленная память DDR2 способна передавать данные со скоростью более 3000 Мбайт/с, то ограничивающим фактором окажется сетевая пропускная способность.

Мы получили максимальную скорость работы нашей гигабитной сети 111,4 Мбайт/с, что очень близко к теоретическому пределу 125 Мбайт/с. Прекрасный результат, жаловаться на него не приходится, поскольку реальная пропускная способность всё равно не будет достигать теоретического максимума из-за передачи дополнительной информации, ошибок, повторных передач и т.д.

Вывод будет следующим: сегодня производительность передачи информации по гигабитной сети упирается в жёсткие диски, то есть скорость передачи будет ограничена самым медленным винчестером, участвующем в процессе. Ответив на самый важный вопрос, мы можем переходить к тестам скорости в зависимости от конфигурации кабелей, чтобы наша статья была полной. Сможет ли оптимизация прокладки кабелей дать скорость сети, ещё более близкую к теоретическому пределу?

Поскольку производительность в наших тестах была близка к предполагаемой, мы вряд ли увидим какие-либо улучшения при изменении конфигурации кабелей. Но мы всё равно хотели провести тесты, чтобы приблизиться к теоретическому ограничению по скорости.

Мы провели четыре теста.

Тест 1: по умолчанию.

В данном тесте мы использовали два кабеля длиной около 8 метров, каждый из которых был подключён к компьютеру на одном конце и к гигабитному коммутатору на другом. Мы оставили кабели там, где их прокладывали, то есть по соседству с кабелями питания и розетками.

На этот раз мы использовали те же 8-м кабели, что и в первом тесте, но перенесли сетевой кабель как можно дальше от кабелей питания и удлинителей.

В данном тесте мы сняли один из 8-м кабелей и заменили его метровым кабелем Cat 5e.

В последнем тесте мы заменили 8-м кабели Cat 5e на 8-м кабели Cat 6.

В общем, наше тестирование разных конфигураций кабелей не показала серьёзной разницы, но выводы сделать можно.

Тест 2: снижаем помехи со стороны кабелей питания.

В небольших сетях, таких как наша домашняя сеть, тесты показывают, что вам можно не беспокоиться о прокладке кабелей LAN рядом с кабелями электропроводки, розетками и удлинителями. Конечно, наводки при этом будут выше, но серьёзного эффекта на скорость сети это не даст. Впрочем, с учётом всего сказанного, лучше избегать прокладки рядом с кабелями питания, да и следует помнить, что в вашей сети ситуация может оказаться иной.

Тест 3: уменьшаем длину кабелей.

Это не совсем корректный тест, но мы пытались обнаружить разницу. Следует помнить, что замена восьмиметрового кабеля на метровый может привести к влиянию на результат просто разных кабелей, чем разницы в расстоянии. В любом случае, в большинстве тестов мы не видим значимой разницы за исключением аномального подъёма пропускной способности во время копирования с клиентского диска C: на серверный C:.

Тест 4: заменяем кабели Cat 5e на Cat 6.

Опять же, мы не обнаружили существенной разницы. Поскольку длина кабелей составляет около 8 метров, большие по длине кабели могут дать большую разницу. Но если у вас длина не максимальная, то кабели Cat 5e будут вполне нормально работать в домашней гигабитной сети с расстоянием между двумя компьютерами 16 метров.

Интересно заметить, что манипуляции с кабелями не дали никакого эффекта на передачу данных между RAM-дисками компьютеров. Вполне очевидно, что какой-то другой компонент в сети ограничивал производительность магической цифрой 111 Мбайт/с. Впрочем, подобный результат всё равно приемлем.

Дают ли гигабитные сети гигабитную скорость? Как оказывается, почти дают.

Однако в реальных условиях скорость сети будет серьёзно ограничиваться жёсткими дисками. В синтетическом сценарии память-память наша гигабитная сеть дала производительность, очень близкую к теоретическому пределу 125 Мбайт/с. Обычные же скорости в сети с учётом производительности жёстких дисков будут ограничиваться уровнем от 20 до 85 Мбайт/с, в зависимости от используемых винчестеров.

Мы также протестировали влияние кабелей питания, длины кабеля и перехода с Cat 5e на Cat 6. В нашей небольшой домашней сети ни один из упомянутых факторов не влиял существенно на производительность, хотя мы хотим отметить, что в более крупной и более сложной сети с большими длинами эти факторы могут влиять намного сильнее.

В общем, если вы передаёте в домашней сети большое количество файлов, то мы рекомендуем устанавливать гигабитную сеть. Переход с сети на 100 Мбит/с даст приятный прирост производительности, по крайней мере, вы получите двукратное увеличение скорости передачи файлов.

Gigabit Ethernet в домашней сети может дать больший прирост производительности, если вы будете считывать файлы с быстрого хранилища NAS, где используется аппаратный массив RAID. В нашей тестовой сети мы передавали 4,3-Гбайт файл всего за одну минуту. По соединению на 100 Мбит/с тот же самый файл копировался около шести минут.

Гигабитные сети становятся всё более доступными. Теперь осталось только дождаться, когда скорости жёстких дисков поднимутся до такого же уровня. А пока что мы рекомендуем создавать массивы, способные обойти ограничения современных технологий HDD. Тогда вы сможете выжать больше производительности из гигабитной сети.

Если на рынке коммутаторов Ethernet и происходит что-то интересное, то это касается преимущественно (или исключительно) решений для центров обработки данных. Переход на более высокие скорости, изменения в архитектуре сети, программируемые сети и коммутаторы без ОС - все эти технологические и технические новшества оказываются востребованы прежде всего в ЦОДе, а до офисных сетей порой и вовсе не добираются. Тем не менее с появлением беспроводных точек доступа 802.11ac возникла необходимость в поддержке скоростей свыше 1 Гбит/с в обычных офисных сетях, а с ней - и потребность в новых, специфичных только для этой ниши скоростях 2,5 и 5 Гбит/с.

10G В ОФИСЕ: И ДАРОМ НЕ НАДО?

Если в облачных центрах обработки данных наряду с 10 Gibabit Ethernet главным драйвером роста спроса на коммутаторы становится потребность в поддержке 40 Gigabit Ethernet, то в корпоративных сетях по-прежнему основное количество подключений приходится на гигабитные соединения (см. рис. 1). Что говорить об обычных офисах, если даже в корпоративных ЦОДах, по данным Broadcom, доля гигабитных портов в серверах и коммутаторах в стойках (ToR) составляет 60%, несмотря на то что оборудование 10GbE доступно на рынке уже 10 лет. В чем же причина?

Если исходить из соотношения цена/производительность, то оборудование 10 Gigabit Ethernet окажется дешевле - условный 1 Гбит/с пропускной способности обойдется в меньшую сумму. Однако если уж в серверах большинство портов гигабитные, то для рабочих станций, а тем более для ПК, столь высокие скорости, как 10 Гбит/с, попросту не нужны. Для многих конечных точек вполне достаточно 100 Мбит/с, и тем не менее они оснащаются платами на 1 Гбит/с. В немалой степени массовому переходу на Gigabit Ethernet способствовал тот факт, что для поддержки таких скоростей не надо было менять уже проложенную проводку - а это не только весьма значительная статья расходов, но и определенные неудобства.

Коммутаторы с портами 10GBase-T для сегмента малых и средних предприятий имеются у целого ряда производителей. Так, например, Netgear предлагает соответствующее оборудование еще с 2013 года, но позиционирует его в первую очередь для подключения серверов и сетевых систем хранения (NAS), а не рабочих станций и персональных компьютеров. «В нашей продуктовой линейке уже сейчас много продуктов с поддержкой скорости передачи данных выше 1 Гбит/с, - отмечает Яков Юницкий, директор по операциям в компании «Тайле». - Их основное предназначение - создание решений для магистральных каналов Ethernet, подключения систем хранения данных и высокопроизводительных серверов».

Между тем именно поддержка той или иной технологии в конечных устройствах способна обеспечить массовость рынка. Однако пока таких задач, где оказались бы востребованы скорости 10 Гбит/с на уровне пользователя, не просматривается. «Предпосылками к массовому переходу офисных сетей на такие скорости должны прежде всего стать приложения с высокими требованиями к пропускной способности, - продолжает Яков Юницкий. - Несмотря на то что многие компании давно перешли на IP-телефонию, используют оборудование для видеоконференций и IP-видеонаблюдения, до потолка производительности сетей 1 Гбит/с, а местами и 100 Mбит/c, еще далеко».

Как показал наш небольшой опрос, проведенный среди производителей и поставщиков оборудования, в сегменте SMB массового спроса на решения 10GbE не наблюдается и, более того, не ожидается. «Маловероятно, что в ближайшие пару лет произойдет повсеместный перевод офисных сетей на скорости доступа выше 1 Гбит/с», - полагает Андрей Ковязин, начальник отдела сетевых решений в «Компании КОМПЛИТ». Однако наличие подобного оборудования в линейке таких производителей, как D-Link (см. рис. 2), Netgear, ZyXEL и др., свидетельствует о том, что спрос на него есть - во всяком случае потенциальная ниша достаточно широ-ка, чтобы привлечь внимание этих вендоров.

«Мы ожидаем, что в 2015–2016 годах рост продаж сетевого оборудования с оптическими и медными портами 10G офисному сегменту и предприятиям малого и среднего бизнеса будет многократным, в том числе за счет появления в продуктовой линейке новых бюджетных серий», - отмечает Денис Давыдов, руководитель отдела проектов D-Link. В компании уверены, что дальнейшее увеличение объемов информации приведет к проникновению технологий 10G в сети любых размеров, в том числе принадлежащие предприятиям SMB, где активно внедряются решения и системы хранения данных и виртуализации, а также облачные технологии.

Согласно оценке Broadcom, в ближайшие три года можно ожидать широкого внедрения серверов и коммутаторов с поддержкой 10GbE в корпоративных сетях, и в результате к 2018 году доля соответствующего оборудования увеличится с нынешних 35 до 63% (см. рис. 3).

10G МНОГО, 1G МАЛО

Дорогостоящие проводка, соединители и микросхемы ограничивают применение 10GbE приложениями с высокими требованиями к ресурсам - такими, например, как мощные виртуализированные серверы с множеством ВМ. Однако в офисных сетях есть задачи, где скорости 1 Гбит/с оказывается уже недостаточно, а 10 Гбит/с пока слишком много. Это подключение к проводной сети беспроводных точек доступа стандарта 802.11ас Wave 2.

Если собственные серверы виртуализации нужны далеко не каждому малому предприятию, к тому же соответствующие ресурсы можно взять из облака, то отсутствие беспроводного доступа для клиентов способно негативно повлиять на конкурентоспособность предприятия из сферы обслуживания, да и точка доступа должна физически находиться в офисе. Как показал опрос Bredin представителей малого бизнеса (число сотрудников от 1 до 10 человек), посетители предпочитают бесплатный Wi-Fi чаю и кофе с конфетами. В отчете отмечается, что если Wi-Fi плохого качества или отсутствует, то восприятие клиентом компании становится отрицательным. Для удовлетворения таких потребностей обычно вполне достаточно точки доступа 802.11n или даже более ранних стандартов, однако более крупным предприятиям и помещениям, где посетителей всегда много, возможностей 802.11n не всегда хватает. Кроме того, для поддержки следующего беспроводного стандарта IEEE 802.3ad в диапазоне 60 ГГц потребуется подключение со скоростью 5 Гбит/с (для TCP).

Появившиеся на рынке ТД 802.11ac Wave 2 пока поддерживают не более четырех пространственных потоков, поэтому для их подключения вполне достаточно двух линий по 1 Гбит/с. Так, например, точка доступа ZoneFlex R710 Wave 2 AP разработки Ruckus Wireless оснащена двумя гигабитными портами, то есть с переходом на более скоростные подключения можно повременить. Однако с появлением ТД, способных поддерживать восемь пространственных потоков, 2х1 Гбит/с может оказаться недостаточно. Для таких ТД потребуется либо подводить дополнительные кабели, либо переходить на 10GbE и, соответственно, на проводку Категории 6А. Чтобы этого избежать, IEEE спешно разрабатывает стандарты Ethernet на 2,5 и 5 Гбит/с. «Их преимущество проявляется в работе по широко распространенным существующим СКС Категорий 5e и 6 на скорости до 5 Гбит/с, что избавляет от необходимости полностью переделывать кабельную систему для беспроводного доступа нового поколения» - отмечает Андрей Ковязин.

Разработкой соответствующих технологий и оборудования занимаются два альянса: NBase-T и MGBase-T (см. подробнее статью автора «Замедление Ethernet» в февральском номере «Журнала сетевых решений/LAN» за 2015 год). Потенциально наличие двух конкурирующих сторон могло затормозить принятие стандарта, как это случилось с 802.11n, на одобрение которого ушло семь лет. Однако, к счастью, на последнем заседании рабочей группы IEEE, собиравшейся в мае текущего года, удалось достигнуть общего согласия по базовой технологии для Ethernet на 2,5 и 5 Гбит/с. Как отметил Дэвид Чалупски, председатель рабочей группы IEEE P802.3bz, «достижение консенсуса позволило немедленно перейти к следующей фазе проекта - составлению чернового варианта спецификации».

Таким образом, было сэкономлено несколько месяцев. Однако работа над стандартом далека от завершения - его подготовка займет еще полтора-два года. К тому времени должно получить широкое распространение беспроводное оборудование 802.11ac Wave 2. Как предполагается, скорость 2,5 Гбит/с будет поддерживаться кабельной проводкой Категории 5е, а 5 Гбит/с - Категории 6. Между тем на рынке уже появляются коммутаторы с поддержкой мультигигабитных скоростей. В первом полугодии этого года соответствующие модули для своих коммутаторов выпустили HP и Cisco. Впрочем, та же Cisco свои точки доступа пока предпочитает оснащать не мультигигабитными портами, а двумя обычными Gigabit Ethernet (см. рис. 4).

Как надеются аналитики, появление новых скоростей Ethernet послужит толчком к модернизации офисных сетей. «Для кампусных коммутаторов настало время модернизации, - считают в Dell’Oro. - Доступность точек доступа 802.11ac Wave 2 корпоративного класса порождает спрос на коммутаторы нового типа». Многогигабитные коммутаторы стоят дороже, чем традиционные с портами 1 Гбит/с, однако они позволяют использовать уже проложенную проводку, что является существенным аргументом в их пользу. «Первые поставки портов 2.5/5.0 GbE стартовали в начале июня, - сообщает Крис Де Пьюи, вице-президент Dell’Oro Group по выпуску оборудования для корпоративного сегмента. - В третьем квартале, с появлением новых предложений, мы ожидаем значительного роста продаж. Уже сейчас можно говорить о формировании совершенно нового сегмента рынка Ethernet». По прогнозам Dell’Oro, уже за первый год будет продано свыше миллиона мультигигабитных портов.

КАКАЯ ПРОВОДКА НУЖНА?

Какой должна быть кабельная инфраструктура для поддержки беспроводного доступа? Требования к такой проводке изложены в TIA TSB-162, где рекомендуется инсталляция кабельной системы Категории 6А или многомодовой оптики с волокнами OM3 (см. подробнее статью Степана Большакова и Романа Китаева «Инфраструктурное обеспечение беспроводных решений нового поколения» в апрельском номере «Журнала сетевых решений/LAN» за 2015 год). Однако эти рекомендации составлялись, когда 2,5- и 5-гигабитного Ethernet не было даже в проекте. Впрочем, для новых инсталляций они остаются справедливы и сейчас, позволяя не беспокоиться о необходимости модернизации долгие годы: те, кто 20 лет назад не поскупился на установку только что появившихся систем Категории 5е, могут по-прежнему пользоваться своей проводкой, если только не исчерпался ее физический ресурс. До морального же устаревания пока далеко, к тому же теперь такая проводка способна поддерживать не только гигабитные, но и 2,5-гигабитные скорости.

Ожидаемое появление стандарта на 2,5 и 5 Гбит/с дало долгожданное приложение для кабельных систем Категории 6: если раньше, по сути, единственным аргументом в пользу ее установки был запас по характеристикам, то теперь он наконец-то пригодился - таким приложением может стать 5GBase-T. «О возросших требованиях рынка к поддерживаемым скоростям и пропускной способности мы, как поставщик кабельных решений, можем судить на основании увеличенного спроса на компоненты и системы СКС различных категорий, - говорит Дарюш Заенц, директор представительства RiT Technologies в России. - Объемы продаж компонентов Категории 6 значительно увеличились по сравнению с продажами компонентов Категории 5е».

Ответить на вопрос о выборе проводки достаточно непросто. Усилия IEEE направлены на то, чтобы подключение высокоскоростных точек доступа осуществлялось на базе уже проложенной проводки. Однако до сих пор неясно, будет ли обеспечена поддержка 5 Гбит/с по Категории 5е (а на нее все еще приходится большинство инсталлированных кабельных систем - см. рис. 5). Судя по последней информации из IEEE, рабочая группа все же решила ограничиться 2,5 Гбит/с. Вместе с тем Cisco, например, заявляет о поддержке 5 Гбит/с по проводке Категории 5е на расстоянии до 100 м.

Скорости 2,5 Гбит/с в принципе достаточно для подключения уже появившихся на рынке продуктов 802.11ac Wave 2 с поддержкой до четырех пространственных потоков. Если же заказчик хочет в перспективе использовать точки доступа с поддержкой восьми пространственных потоков, то ему придется либо переходить на Категорию 6 (если у него установлена Категория 5е), либо надеяться на нестандартное оборудование (в случае отсутствия спецификаций на 5Base-T для Категории 5е). (Строго говоря, не исключается и третий вариант - объединение двух соединений по 2,5 Гбит/с, при условии поддержки этой возможности оборудованием.)

Пропускной способности 5 Гбит/с, то есть Категории 6 в худшем случае, будет вполне достаточно для любого оборудования 802.11ac. Теоретическая максимальная пропускная способность для этого стандарта составляет 6,9 Гбит/с, но речь идет о скорости передачи битов на физическом уровне. Пропускная же способность на MAC-уровне существенно меньше - 4,49 Гбит/с (см. таблицу). Эффективность проводного Ethernet намного лучше, чем беспроводного, - например, для 10GbE при передаче кадров размером 1518 она составляет приблизительно 94% (для пользовательских данных). Иначе говоря, беспроводной поток 6,9 Гбит/с поместится в проводной канал 5 Гбит/с.

Материал из Википедии - свободной энциклопедии

Измерения в битах
ГОСТ 8.417 -2002 приставки МЭК
Название Символ Степень Название Символ Степень
килобит Kбит 10 3 кибибит Kibit Кибит 2 10
мегабит Мбит 10 6 мебибит Mibit Мибит 2 20
гигабит Гбит 10 9 гибибит Gibit Гибит 2 30
терабит Тбит 10 12 тебибит Tibit Тибит 2 40
петабит Пбит 10 15 пебибит Pibit Пибит 2 50
эксабит Эбит 10 18 эксбибит Eibit Эибит 2 60
зеттабит Збит 10 21 зебибит Zibit Зибит 2 70
йоттабит Йбит 10 24 йобибит Yibit Йибит 2 80

Гигаби́т - (Гбит) м., скл. - единица измерения количества двоичной информации. Используется при оценке скорости передачи информации в цифровых сетях .

1 гигабит = 10 9 бит = 1000 000 000 (миллиард) бит .

Используется сокращённое обозначение Gbit или, в русском обозначении, - Гбит (гигабит не следует путать с гигабайтом ГБ). В соответствии с международным стандартом МЭК 60027-2 единицы бит и байт применяют с приставками СИ .

Гигабит обычно используется для обозначения скорости передачи данных в компьютерных или телекоммуникационных сетях, например: «Ethernet подключение со скоростью Гбит/с (гигабит в секунду)» или «подключение к 100-гигабитной сети».

Обозначение гигабита согласно стандарту JEDEC

Обозначение гигабита согласно стандарту IEEE 1541-2002

В марте 1999 года Международная электротехническая комиссия ввела новый стандарт МЭК 60027-2, в котором описано именование двоичных чисел. Приставки МЭК схожи с СИ: они начинаются на те же слоги, но второй слог у всех двоичных приставок - би (binary - «двоичный», англ.). То есть гигабит становился гибибитом.

Стандарт 1541-2002 вводит аналогичные понятия. Утвержден IEEE в 2008 г.

По стандарту:

  • Двоичная приставка для бита (бит (bit) (символ "b"), двоичный знак) - устанавливается гиби (gibi) (символ "Gi"), 2 30 = 1073 741 824 ;
  • Приставки СИ не используются в качестве двоичных приставок.

Обозначение гигабита согласно стандарту ГОСТ 8.417-2002

  • В соответствии с международным стандартом МЭК 60027-2 единицы «бит» применяют с приставками СИ.
Приставка Обозначение Ошибочное применение Корректное применение Относит.
ошибка, %
гига Г, G 2 30 = 1 073 741 824 10 9 = 1 000 000 000 7,37

1 Гигабит равен

См. также

Напишите отзыв о статье "Гигабит"

Примечания

Отрывок, характеризующий Гигабит

– Ma bonne amie, [Мой добрый друг,] – сказала маленькая княгиня утром 19 го марта после завтрака, и губка ее с усиками поднялась по старой привычке; но как и во всех не только улыбках, но звуках речей, даже походках в этом доме со дня получения страшного известия была печаль, то и теперь улыбка маленькой княгини, поддавшейся общему настроению, хотя и не знавшей его причины, – была такая, что она еще более напоминала об общей печали.
– Ma bonne amie, je crains que le fruschtique (comme dit Фока – повар) de ce matin ne m"aie pas fait du mal. [Дружочек, боюсь, чтоб от нынешнего фриштика (как называет его повар Фока) мне не было дурно.]
– А что с тобой, моя душа? Ты бледна. Ах, ты очень бледна, – испуганно сказала княжна Марья, своими тяжелыми, мягкими шагами подбегая к невестке.
– Ваше сиятельство, не послать ли за Марьей Богдановной? – сказала одна из бывших тут горничных. (Марья Богдановна была акушерка из уездного города, жившая в Лысых Горах уже другую неделю.)
– И в самом деле, – подхватила княжна Марья, – может быть, точно. Я пойду. Courage, mon ange! [Не бойся, мой ангел.] Она поцеловала Лизу и хотела выйти из комнаты.
– Ах, нет, нет! – И кроме бледности, на лице маленькой княгини выразился детский страх неотвратимого физического страдания.
– Non, c"est l"estomac… dites que c"est l"estomac, dites, Marie, dites…, [Нет это желудок… скажи, Маша, что это желудок…] – и княгиня заплакала детски страдальчески, капризно и даже несколько притворно, ломая свои маленькие ручки. Княжна выбежала из комнаты за Марьей Богдановной.
– Mon Dieu! Mon Dieu! [Боже мой! Боже мой!] Oh! – слышала она сзади себя.
Потирая полные, небольшие, белые руки, ей навстречу, с значительно спокойным лицом, уже шла акушерка.
– Марья Богдановна! Кажется началось, – сказала княжна Марья, испуганно раскрытыми глазами глядя на бабушку.
– Ну и слава Богу, княжна, – не прибавляя шага, сказала Марья Богдановна. – Вам девицам про это знать не следует.
– Но как же из Москвы доктор еще не приехал? – сказала княжна. (По желанию Лизы и князя Андрея к сроку было послано в Москву за акушером, и его ждали каждую минуту.)
– Ничего, княжна, не беспокойтесь, – сказала Марья Богдановна, – и без доктора всё хорошо будет.
Через пять минут княжна из своей комнаты услыхала, что несут что то тяжелое. Она выглянула – официанты несли для чего то в спальню кожаный диван, стоявший в кабинете князя Андрея. На лицах несших людей было что то торжественное и тихое.
Княжна Марья сидела одна в своей комнате, прислушиваясь к звукам дома, изредка отворяя дверь, когда проходили мимо, и приглядываясь к тому, что происходило в коридоре. Несколько женщин тихими шагами проходили туда и оттуда, оглядывались на княжну и отворачивались от нее. Она не смела спрашивать, затворяла дверь, возвращалась к себе, и то садилась в свое кресло, то бралась за молитвенник, то становилась на колена пред киотом. К несчастию и удивлению своему, она чувствовала, что молитва не утишала ее волнения. Вдруг дверь ее комнаты тихо отворилась и на пороге ее показалась повязанная платком ее старая няня Прасковья Савишна, почти никогда, вследствие запрещения князя,не входившая к ней в комнату.
– С тобой, Машенька, пришла посидеть, – сказала няня, – да вот княжовы свечи венчальные перед угодником зажечь принесла, мой ангел, – сказала она вздохнув.
– Ах как я рада, няня.
– Бог милостив, голубка. – Няня зажгла перед киотом обвитые золотом свечи и с чулком села у двери. Княжна Марья взяла книгу и стала читать. Только когда слышались шаги или голоса, княжна испуганно, вопросительно, а няня успокоительно смотрели друг на друга. Во всех концах дома было разлито и владело всеми то же чувство, которое испытывала княжна Марья, сидя в своей комнате. По поверью, что чем меньше людей знает о страданиях родильницы, тем меньше она страдает, все старались притвориться незнающими; никто не говорил об этом, но во всех людях, кроме обычной степенности и почтительности хороших манер, царствовавших в доме князя, видна была одна какая то общая забота, смягченность сердца и сознание чего то великого, непостижимого, совершающегося в эту минуту.

mob_info