Основные формулы по физике - колебания и волны. Колебания

Всё на планете имеет свою частоту. Согласно одной из версий, она даже положена в основу нашего мира. Увы, теория весьма сложна, чтобы излагать её в рамках одной публикации, поэтому нами будет рассмотрена исключительно частота колебаний как самостоятельное действие. В рамках статьи будет дано определения этому физическому процессу, его единицам измерений и метрологической составляющей. И под конец будет рассмотрен пример важности в обычной жизни обыкновенного звука. Мы узнаем, что он собой представляет и какова его природа.

Что называют частотой колебаний?

Под этим подразумевают физическую величину, которая используется для характеристики периодического процесса, что равен количеству повторений или возникновений определённых событий за одну единицу времени. Этот показатель рассчитывается как отношение числа данных происшествий к промежутку времени, за который они были совершены. Собственная частота колебаний есть у каждого элемента мира. Тело, атом, дорожный мост, поезд, самолёт - все они совершают определённые движения, которые так называются. Пускай эти процессы не видны глазу, они есть. Единицами измерений, в которых считается частота колебаний, являются герцы. Своё название они получили в честь физика немецкого происхождения Генриха Герца.

Мгновенная частота

Периодический сигнал можно охарактеризовать мгновенной частотой, которая с точностью до коэффициента является скоростью изменения фазы. Его можно представить как сумму гармонических спектральных составляющих, обладающих своими постоянными колебаниями.

Циклическая частота колебаний

Её удобно применять в теоретической физике, особенно в разделе про электромагнетизм. Циклическая частота (её также называют радиальной, круговой, угловой) - это физическая величина, которая используется для обозначения интенсивности происхождения колебательного или вращательного движения. Первая выражается в оборотах или колебаниях на секунду. При вращательном движении частота равняется модулю вектора угловой скорости.

Выражение этого показателя осуществляется в радианах на одну секунду. Размерность циклической частоты является обратной времени. В числовом выражении она равняется числу колебаний или оборотов, что произошли за количество секунд 2π. Её введения для использования позволяет значительно упрощать различный спектр формул в электронике и теоретической физике. Самый популярный пример использования - это обсчёт резонансной циклической частоты колебательного LC-контура. Другие формулы могут значительно усложняться.

Частота дискретных событий

Под этой величиной подразумевают значение, что равно числу дискретных событий, которые происходят за одну единицу времени. В теории обычно используется показатель - секунда в минус первой степени. На практике, чтобы выразить частоту импульсов, обычно применяют герц.

Частота вращения

Под нею понимают физическую величину, которая равняется числу полных оборотов, что происходят за одну единицу времени. Здесь также применяется показатель - секунда в минус первой степени. Для обозначения сделанной работы могут использовать такие словосочетания, как оборот в минуту, час, день, месяц, год и другие.

Единицы измерения

В чём же измеряется частота колебаний? Если брать во внимание систему СИ, то здесь единица измерения - это герц. Первоначально она была введена международной электротехнической комиссией ещё в 1930 году. А 11-я генеральная конференция по весам и мерам в 1960-м закрепила употребление этого показателя как единицы СИ. Что было выдвинуто в качестве «идеала»? Им выступила частота, когда один цикл совершается за одну секунду.

Но что делать с производством? Для них были закреплены произвольные значения: килоцикл, мегацикл в секунду и так далее. Поэтому беря в руки устройство, которое работает с показателем в ГГц (как процессор компьютера), можете примерно представить, сколько действий оно совершает. Казалось бы, как медленно для человека тянется время. Но техника за тот же промежуток успевает выполнять миллионы и даже миллиарды операций в секунду. За один час компьютер делает уже столько действий, что большинство людей даже не смогут представить их в численном выражении.

Метрологические аспекты

Частота колебаний нашла своё применение даже в метрологии. Различные устройства имеют много функций:

  1. Измеряют частоту импульсов. Они представлены электронно-счётными и конденсаторными типами.
  2. Определяют частоту спектральных составляющих. Существуют гетеродинные и резонансные типы.
  3. Производят анализ спектра.
  4. Воспроизводят необходимую частоту с заданной точностью. При этом могут применяться различные меры: стандарты, синтезаторы, генераторы сигналов и другая техника этого направления.
  5. Сравнивают показатели полученных колебаний, в этих целях используют компаратор или осциллограф.

Пример работы: звук

Всё выше написанное может быть довольно сложным для понимания, поскольку нами использовался сухой язык физики. Чтобы осознать приведённую информацию, можно привести пример. В нём всё будет детально расписано, основываясь на анализе случаев из современной жизни. Для этого рассмотрим самый известный пример колебаний - звук. Его свойства, а также особенности осуществления механических упругих колебаний в среде, находятся в прямой зависимости от частоты.

Человеческие органы слуха могут улавливать колебания, которые находятся в рамках от 20 Гц до 20 кГц. Причём с возрастом верхняя граница будет постепенно снижаться. Если частота колебаний звука упадёт ниже показателя в 20 Гц (что соответствует ми субконтроктавы), то будет создаваться инфразвук. Этот тип, который в большинстве случаев не слышен нам, люди всё же могут ощущать осязательно. При превышении границы в 20 килогерц генерируются колебания, которые называются ультразвуком. Если частота превысит 1 ГГц, то в этом случае мы будем иметь дело с гиперзвуком. Если рассматривать такой музыкальный инструмент, как фортепиано, то он может создавать колебания в диапазоне от 27,5 Гц до 4186 Гц. При этом следует учитывать, что музыкальный звук не состоит только из основной частоты - к нему ещё примешиваются обертоны, гармоники. Это всё вместе определяет тембр.

Заключение

Как вы имели возможность узнать, частота колебаний является чрезвычайно важной составляющей, которая позволяет функционировать нашему миру. Благодаря ей мы можем слышать, с её содействия работают компьютеры и осуществляется множество других полезных вещей. Но если частота колебаний превысит оптимальный предел, то могут начаться определённые разрушения. Так, если повлиять на процессор, чтобы его кристалл работал с вдвое большими показателями, то он быстро выйдет из строя.

Подобное можно привести и с человеческой жизнью, когда при высокой частотности у него лопнут барабанные перепонки. Также произойдут другие негативные изменения с телом, которые повлекут за собой определённые проблемы, вплоть до смертельного исхода. Причём из-за особенности физической природы этот процесс растянется на довольно длительный промежуток времени. Кстати, беря во внимание этот фактор, военные рассматривают новые возможности для разработки вооружения будущего.

При изучении этого раздела следует иметь в виду, что колебания различной физической природы описываются с единых математических позиций. Здесь надо четко уяснить такие понятия, как гармоническое колебание, фаза, разность фаз, амплитуда, частота, период колебани.

Надо иметь в виду, что во всякой реальной колебательной системе есть сопротивления среды, т.е. колебания будут затухающими. Для характеристики затухания колебаний вводится коэффициент затухания и логарифмический декремент затухани.

Если колебания совершаются под действием внешней, периодически изменяющейся силы, то такие колебания называют вынужденными. Они будут незатухающими. Амплитуда вынужденных колебаний зависит от частоты вынуждающей силы. При приближении частоты вынужденных колебаний к частоте собственных колебаний амплитуда вынужденных колебаний резко возрастает. Это явление называется резонансом.

Переходя к изучению электромагнитных волн нужно четко представлять, что электромагнитная волна - это распространяющееся в пространстве электромагнитное поле. Простейшей системой, излучающей электромагнитные волны, является электрический диполь. Если диполь совершает гармонические колебания, то он излучает монохроматическую волну.

Таблица формул: колебания и волны

Физические законы, формулы, переменные

Формулы колебания и волны

Уравнение гармонических колебаний:

где х - смещение (отклонение) колеблющейся величины от положения равновесия;

А - амплитуда;

ω - круговая (циклическая) частота;

α - начальная фаза;

(ωt+α) - фаза.

Связь между периодом и круговой частотой:

Частота:

Связь круговой частоты с частотой:

Периоды собственных колебаний

1) пружинного маятника:

где k - жесткость пружины;

2) математического маятника:

где l - длина маятника,

g - ускорение свободного падения;

3) колебательного контура:

где L - индуктивность контура,

С - емкость конденсатора.

Частота собственных колебаний:

Сложение колебаний одинаковой частоты и направления:

1) амплитуда результирующего колебания

где А 1 и А 2 - амплитуды составляющих колебаний,

α 1 и α 2 - начальные фазы составляющих колебаний;

2) начальная фаза результирующего колебания

Уравнение затухающих колебаний:

е = 2,71... - основание натуральных логарифмов.

Амплитуда затухающих колебаний:

где А 0 - амплитуда в начальный момент времени;

β - коэффициент затухания;

Коэффициент затухания:

колеблющегося тела

где r - коэффициент сопротивления среды,

m - масса тела;

колебательного контура

где R - активное сопротивление,

L - индуктивность контура.

Частота затухающих колебаний ω:

Период затухающих колебаний Т:

Логарифмический декремент затухания:

Время, в течение которого совершается одно полное изме­нение ЭДС, то есть один цикл колебания или один полный оборот радиуса-вектора, называется периодом колебания пере­менного тока (рисунок 1).

Рисунок 1. Период и амплитуда синусоидального колебания. Период - время одного колебания; Аплитуда - его наибольшее мгновенное значение.

Период выражают в секундах и обозначают буквой Т .

Так же используются более мелкие единицы измерения периода это миллисекунда (мс)- одна тысячная секунды и микросекунда (мкс)- одна миллионная секунды.

1 мс =0,001сек =10 -3 сек.

1 мкс=0,001 мс = 0,000001сек =10 -6 сек.

1000 мкс = 1 мс.

Число полных изменений ЭДС или число оборотов ради­уса-вектора, то есть иначе говоря, число полных циклов колеба­ний, совершаемых переменным током в течение одной секунды, называется частотой колебаний переменного тока .

Частота обо­значается буквой f и выражается в периодах в секунду или в герцах.

Одна тысяча герц называется килогерцом (кГц), а миллион герц - мегагерцом (МГц). Существует так же единица гигагерц (ГГц) равная одной тысячи мегагерц.

1000 Гц = 10 3 Гц = 1 кГц;

1000 000 Гц = 10 6 Гц = 1000 кГц = 1 МГц;

1000 000 000 Гц = 10 9 Гц = 1000 000 кГц = 1000 МГц = 1 ГГц;

Чем быстрее происходит изменение ЭДС, то есть чем бы­стрее вращается радиус-вектор, тем меньше период колебания Чем быстрее вращается радиус-вектор, тем выше частота. Таким образом, частота и период переменного тока являются величинами, обратно пропорциональными друг другу. Чем больше одна из них, тем меньше другая.

Математическая связь между периодом и частотой переменного тока и напряжения выра­жается формулами

Например, если частота тока равна 50 Гц, то период будет равен:

Т = 1/f = 1/50 = 0,02 сек.

И наоборот, если известно, что период тока равен 0,02 сек, (T=0,02 сек.), то частота будет равна:

f = 1/T=1/0,02 = 100/2 = 50 Гц

Частота переменного тока, используемого для освещения и промышленных целей, как раз и равна 50 Гц.

Частоты от 20 до 20 000 Гц называются звуковыми часто­тами. Токи в антеннах радиостанций колеблются с частотами до 1 500 000 000 Гц или, иначе говоря, до 1 500 МГц или 1,5 ГГц. Такие вы­сокие частоты называются радиочастотами или колебаниями высокой частоты.

Наконец, токи в антеннах радиолокационных станций, станций спутниковой связи, других спецсистем (например ГЛАНАСС, GPS) колеблются с частотами до 40 000 МГц (40 ГГц) и выше.

Амплитуда переменного тока

Наибольшее значение, которого достигает ЭДС или сила тока за один период, называется амплитудой ЭДС или силы переменного тока . Легко заметить, что амплитуда в масштабе равна длине радиуса-вектора. Амплитуды тока, ЭДС и напряжения обозначаются соответственно бук­вами Im, Em и Um (рисунок 1).

Угловая (циклическая) частота переменного тока.

Скорость вращения радиуса-вектора, т. е. изменение ве­личины угла поворота в течение одной секунды, называется угловой (циклической) частотой переменного тока и обозначается греческой буквой ? (оме­га). Угол поворота радиуса-вектора в любой данный момент относительно его начального положения измеряется обычно не в градусах, а в особых единицах - радианах.

Радианом называется угловая величина дуги окружности, длина которой равна радиусу этой окружности (рисунок 2). Вся окружность, составляющая 360°, равна 6,28 радиан, то есть 2.

Рисунок 2.

1рад = 360°/2

Следовательно, конец радиуса-вектора в течение одного периода пробегают путь, равный 6,28 радиан (2). Так как в тече­ние одной секунды радиус-вектор совершает число оборотов, равное частоте переменного тока f , то за одну секунду его ко­нец пробегает путь, равный 6,28 * f радиан. Это выражение, характеризующее скорость вращения радиуса-вектора, и будет угловой частотой переменного тока - ? .

? = 6,28*f = 2f

Угол поворота радиуса-вектора в любое данное мгновение относительно его начального положения называется фазой переменного тока . Фаза характеризует величину ЭДС (или тока) в данное мгновение или, как говорят, мгновенное значение ЭДС, ее направление в цепи и направление ее изменения; фаза пока­зывает, убывает ли ЭДС или возрастает.

Рисунок 3.

Полный оборот радиуса-вектора равен 360°. С началом но­вого оборота радиуса-вектора изменение ЭДС происходит в том же порядке, что и в течение первого оборота. Следова­тельно, все фазы ЭДС будут повторяться в прежнем поряд­ке. Например, фаза ЭДС при повороте радиуса-вектора на угол в 370° будет такой же, как и при повороте на 10°. В обо­их этих случаях радиус-вектор занимает одинаковое положе­ние, и, следовательно, мгновенные значения ЭДС будут в обоих этих случаях одинаковыми по фазе.


В мире, окружающем нас, есть много явлений и процессов, которые, по большому счету, незаметны не потому, что их нет, а потому, что мы их попросту не замечаем. Они присутствуют всегда и являются такой же незаметной и обязательной сущностью вещей, без которой нашу жизнь и представить трудно. Каждому, например, известно, что такое колебание: в самом общем виде - это отклонение от состояния равновесия. Ну, хорошо, отклонилась верхушка Останкинской башни на свои 5 м, а что дальше? Так и застынет? Ничего подобного, начнет возвращаться назад, проскочит состояние равновесия и будет отклоняться в другую сторону, и так вечно, пока она будет существовать. А скажите, много людей реально видели эти вполне серьезные колебания такого огромного сооружения? Все знают, колеблется, сюда-туда, сюда-туда, и днем и ночью, зимой и летом, но как-то… не заметно. Причины колебательного процесса - это другой вопрос, но его наличие - неотделимый признак всего сущего.

Колеблется все вокруг: здания, сооружения, маятники часов, листья на деревьях, струны скрипки, поверхность океана, ножки камертона… Среди колебаний различают хаотичные, которые не имеют строгой повторяемости, и циклические, у которых за временной период Т колеблющееся тело проходит полный набор своих изменений, а затем этот цикл в точности повторяется, вообще говоря, бесконечно долго. Обычно эти изменения подразумевают последовательный перебор пространственных координат, как это можно наблюдать на примере колебаний маятника или той же башни.

Количество колебаний в единицу времени называется частотой F = 1/T. Единица измерения частоты - Гц = 1/сек. Понятное дело, что циклическая частота является параметром одноименных колебаний любого вида. Тем не менее, на практике принято это понятие, с некоторыми дополнениями, относить преимущественно к колебаниям вращательного характера. Так уж сложилось в технике, что является основой большинства станков, механизмов, устройств. Для таких колебаний один цикл составляет один оборот, и тогда удобнее использовать угловые параметры перемещения. Исходя из этого, вращательное перемещение измеряют угловыми единицами, т.е. один оборот равен 2π радиан, а циклическая частота ῳ = 2π / T. Из этого выражения легко просматривается связь c частотой F: ῳ = 2πF. Это позволяет сказать, что циклическая частота - это количество колебаний (полных оборотов) за 2π секунд.

Казалось бы, не в лоб, так… Не совсем так. Множители 2π и 2πF применяются во многих уравнениях электроники, математической и теоретической физики в разделах, где колебательные процессы изучаются с использованием понятия циклическая частота. Формула резонансной частоты, например, сокращается на два сомножителя. В случае использования в расчетах единицы «об./сек» угловая, циклическая, частота ῳ численно совпадает со значением частоты F.

Колебания, как суть и форма существования материи, и ее вещественного воплощения - предметов нашего бытия, имеют большое значение в жизни человека. Знание законов колебаний позволило создать современную электронику, электротехнику, многие современные машины. К сожалению, колебания не всегда приносят положительный эффект, иногда они приносят горе и разрушения. Неучтённые колебания, причина многих аварий, вызывают материалов, а циклическая частота резонансных колебаний мостов, плотин, деталей машин приводит к их преждевременному выходу из строя. Изучение колебательных процессов, умение предсказать поведение природных и технических объектов с целью предотвратить их разрушение или выход из рабочего состояния - основная задача многих инженерных приложений, а обследование промышленных объектов и механизмов на виброустойчивость - обязательный элемент эксплуатационного обслуживания.

Колебания - повторяющийся в той или иной степени во времени процесс изменения состояний системы около точки равновесия.

Гармоническое колебание - колебания, при которых физическая (или любая другая) величина изменяется с течением времени по синусоидальному или косинусоидальному закону. Кинематическое уравнение гармонических колебаний имеет вид

где х - смещение (отклонение) колеблющейся точки от положения равновесия в момент времени t; А - амплитуда колебаний, это величина, определяющая максимальное отклонение колеблющейся точки от положения равновесия; ω - циклическая частота, величина, показывающая число полных колебаний происходящих в течение 2π секунд - полная фаза колебаний, 0- начальная фаза колебаний.

Амплитуда - максимальное значение смещения или изменения переменной величины от среднего значения при колебательном или волновом движении.

Амплитуда и начальная фаза колебаний определяется начальными условиями движения, т.е. положением и скоростью материальной точки в момент t=0.

Обобщенное гармоническое колебание в дифференциальном виде

амплитуда звуковых волн и аудиосигналов обычно относится к амплитуде давления воздуха в волне, но иногда описывается как амплитуда смещения относительно равновесия (воздуха или диафрагмы говорящего)

Чaстота - физическая величина, характеристика периодического процесса, равная числу полных циклов процесса, совершённых за единицу времени. Частота колебаний в звуковых волнах определяется частотой колебаний источника. Колебания высокой частоты затухают быстрее низкочастотных.

Величина, обратная частоте колебаний называется периодом Т.

Период колебаний- длительность одного полного цикла колебаний.

В системе координат из точки 0 проведём вектор А̅, проекция которого на ось ОХ равна Аcosϕ. Если вектор А̅ будет равномерно вращаться с угловой скоростью ω˳ против часовой стрелки, то ϕ=ω˳t +ϕ˳, где ϕ˳ начальное значение ϕ(фазы колебаний), то амплитуда колебаний есть модуль равномерно вращающегося вектора А̅, фаза колебаний (ϕ)- угол между вектором А̅ и осью ОХ, начальная фаза(ϕ˳) -начальное значение этого угла, угловая частота колебаний(ω) – угловая скорость вращения вектора А̅..

2. Характеристики волновых процессов: фронт волны, луч, скорость волны, длина волны . Продольные и поперечные волны; примеры.

Поверхность, разделяющая в данный момент времени уже охваченную и ещё не охваченную колебаниями среду,называется фронт волны. Во всех точках такой поверхности после ухода фронта волны устанавливаются колебания,одинаковые по фазе.


Луч-это перпендикуляр к фронту волны. Акустические лучи, подобно световым, прямолинейны в однородной среде. Отражаются и преломляются на границе раздела 2-х сред.

Длина волны- расстояние между двумя ближайшими друг к другу точками, колеблющимися в одинаковых фазах, обычно длина волны обозначается греческой буквой . По аналогии с волнами, возникающими в воде от брошенного камня, длиной волны является расстояние между двумя соседними гребнями волны. Одна из основных характеристик колебаний. Измеряется в единицах расстояния (метры, сантиметры и т. п.)

  • продольные волны (волны сжатия, P-волны) - частицы среды колеблются параллельно (по) направлению распространения волны (как, например, в случае распространения звука);
  • поперечные волны (волны сдвига, S-волны) - частицы среды колеблются перпендикулярно направлению распространения волны (электромагнитные волны, волны на поверхностях разделения сред);

Угловая частота колебаний(ω) – угловая скорость вращения вектора А̅(Ѵ), смещение х колеблющейся точки – проекция вектора А̅ на ось ОХ.

Ѵ=dx/dt=-Aω˳sin(ω˳t+ϕ˳)=-Ѵmsin(ω˳t+ϕ˳),гдеVm=Аω˳ ―максимальная скорость (амплитуда скорости)

3. Свободные и вынужденные колебания. Собственная частота колебаний системы. Явление резонанса. Примеры.

Свободными (собственными) колебаниями называют такие, которые совершаются без внешних воздействий за счет первоначально полученной теплом энергии. Характерными моделями таких механических колебаний являются материальная точка на пружине (пружинный маятник) и материальная точка на нерастяжимой нити (математический маятник).

В этих примерах колебания возникают либо за счет первоначальной энергии (отклонение материальной точки от положения равновесия и движения без начальной скорости), либо за счет кинетической (телу сообщается скорость в начальном положении равновесия), либо за счет и той и другой энергии (сообщение скорости телу, отклоненному от положения равновесия).

Рассмотрим пружинный маятник. В положении равновесия упругая сила F1

уравновешивает силу тяжести mg . Если оттянуть пружину на расстояние x, то на материальную точку будет действовать большая упругая сила. Изменение значения упругой силы (F), согласно закону Гука, пропорционально изменению длины пружины или смещению x точки: F= - rx

Другой пример. Математический маятник отклонения от положения равновесия га такой небольшой угол α , чтобы можно было считать траекторию движения материальной точки прямой линией, совпадающей с осью OX. При этом выполняется приближенное равенство: α ≈sin α≈ tgα ≈x/L

Незатухающие колебания. Рассмотрим модель, в которой пренебрегают силой сопротивления.
Амплитуда и начальная фаза колебаний определяются начальными условиями движения, т.е. положением и скоростью материальной точки момент t=0.
Среди различных видов колебаний гармоническое колебание является наиболее простой формой.

Таким образом, материальная точка, подвешенная на пружине или нити, совершает гармонические колебания, если не учитывать силы сопротивления.

Период колебаний может быть найден из формулы: T=1/v=2П/ω0

Затухающие колебания. В реальном случае на колеблющееся тело действуют силы сопротивления (трения), характер движения изменяется, и колебание становится затухающим.

Применительно к одномерному движению последней формуле придадим следующий вид: Fс= - r * dx/dt

Быстрота убывания амплитуды колебаний определяется коэффициентом затухания: чем сильнее тормозящее действие среды, тем больше ß и тем быстрее уменьшается амплитуда. На практически, однако, степень затухания часто характеризуются логарифмическим декрементом затухания, понимая под эти величину, равную натуральному логарифму отношения двух последовательных амплитуд, разделенных интервалом времени, равным периоду колебаний следовательно, коэффициент затухания и логарифмический декремент затухания связаны достаточно простой зависимостью: λ=ßT

При сильном затухании из формулы видно, что период колебания является мнимой величиной. Движение в этом случае уже не будет периодическим и называется апериодическим.

Вынужденные колебания. Вынужденными колебаниями называются колебания, возникающие в системе при участии внешней силы, изменяющейся по периодическому закону.

Предположим, что на материальную точку, кроме упругой силы и силы трения, действует внешняя вынуждающая сила F=F0 cos ωt

Амплитуда вынужденного колебания прямо пропорциональна амплитуде вынуждающей силы и имеет сложную зависимость от коэффициента затухания среды и круговых частот собственного и вынужденного колебаний. Если ω0 и ß для системы заданы, то амплитуда вынужденных колебаний имеет максимальное значение при некоторой определенной частоте вынуждающей силы, называемой резонансной Само явление – достижение максимальной амплитуды вынужденных колебаний для заданных ω0 и ß – называют резонансом.

Резонансную круговую частоту можно найти из условия минимума знаменателя в: ωрез=√ωₒ- 2ß

Механический резонанс сожжет быть как полезным, так и вредным явлением. Вредное действие связано главным образом с разрушение, которое он может вызывать. Так, в технике, учитывая разные вибрации, необходимо предусматривать возможное возникновение резонансных условий, в противном случае могут быть разрушения и катастрофы. Тела обычно имеют несколько собственных частот колебаний и соответственно несколько резонансных частот.

Резонансные явления при действии внешних механических колебаний происходят во внутренних органах. В этом, видимо, одна из причин отрицательного воздействия инфразвуковых колебаний и вибраций на организм человека.

6.Звуковые методы исследования в медицине: перкуссия, аускультация. Фонокардиография.

Звук может быть источником информации о состоянии внутренних органов человека, поэтому в медицине хорошо распространены такие методы изучения состояния пациента, как аускультация, перкуссия и фонокардиография

Аускультация

Для аускультация используют стетоскоп или фонендоскоп. Фонендоскоп состоит из полой капсулы с передающей звук мембраной, прикладываемой к телу больного, от нее идут резиновые трубки к уху врача. В капсуле возникает резонанс столба воздуха, вследствие чего усиливается звучание и улучшается аускультация. При аускультации легких выслушивают дыхательные шумы, разные хрипы, характерные для заболеваний. Также можно прослушивать сердце, кишечник и желудок.

Перкуссия

В этом методе выслушивают звучание отдельных частей тела при простукивании их. Представим замкнутую полость внутри какого-нибудь тела, заполненную воздухом. Если вызвать в этом теле звуковые колебания, то при определенной частоте звука воздух в полости начнет резонировать, выделяя и усиливая тон,соответствующий размеру и положению полости. Тело человека можно представить как совокупность газонаполненных(легкие) , жидких(внутренние органы) и твердых(кости) объемов. При ударе по поверхности тела возникают колебания, частоты которых имеют широкий диапазон. Из этого диапазона одни колебания погаснут довольно быстро, другие же, совпадающие с собственными колебаниями пустот, усилятся и вследствие резонанса будут слышимы.

Фонокардиография

Применяется для диагностики состояния сердечной деятельности. Метод заключается в графической регистрации тонов и шумов сердца и их диагностической интерпретации. Фонокардиограф состоит из микрофона, усилителя, системы частотных фильтров и регистрирующего устройства.

9. Ультразвуковые методы исследования (УЗИ) в медицинской диагностике.

1) Методы диагностики и исследования

Относят локационные методы с использованием главным образом импульсивного излучения. Это эхоэнцефалография – определение опухолей и отека головного мозга. Ультразвуковая кардиография – измерение размеров сердца в динамике; в офтальмологии – ультразвуковая локация для определения размеров глазных сред.

2)Методы воздействия

Ультразвуковая физиотерапия – механическое и тепловое воздействие на ткань.

11. Ударная волна. Получение и использование ударных волн в медицине.
Ударная волна – поверхность разрыва, которая движется относительно газа и при пересечении которой давление, плотность, температура и скорость испытывают скачок.
При больших возмущениях (взрыв, сверхзвуковое движение тел, мощный электрический разряд и т.п.) скорость колеблющихся частиц среды может стать сравнимой со скоростью звука, возникает ударнаяволна .

Ударная волна может обладать значительной энергией , так, при ядерном взрыве на образование ударной волны в окружающей среде затрачивается около 50% энергии взрыва. Поэтому ударная волна, достигая биологических и технических объектов, способна причинить смерть, увечья и разрушения.

В медицинской технике используются ударные волны , представляющие собой чрезвычайно короткий, мощный импульс давления с высокими амплитудами давления и малой компонентой растяжения. Они генерируются вне тела пациента и передаются вглубь тела, производя терапевтический эффект, предусмотренный специализацией модели оборудования: дробление мочевых камней, лечение болевых зон и последствий травм опорно-двигательного аппарата, стимуляцию восстановления сердечной мышцы после инфаркта миокарда, разглаживание целлюлитных образований и т. д.

mob_info