Мега приставка 10 в. Сокращённая запись численных величин

Сокращённые обозначения эл.величин

При сборке электронных схем волей неволей приходится пересчитывать величины сопротивлений резисторов, ёмкостей конденсаторов, индуктивность катушек.

Так, например, возникает необходимость переводить микрофарады в пикофарады, килоомы в омы, миллигенри в микрогенри.

Как не запутаться в расчётах?

Если будет допущена ошибка и выбран элемент с неверным номиналом, то собранное устройство будет неправильно работать или иметь другие характеристики.

Такая ситуация на практике не редкость, так как иногда на корпусах радиоэлементов указывают величину ёмкости в нано фарадах (нФ), а на принципиальной схеме ёмкости конденсаторов, как правило, указаны в микро фарадах (мкФ) и пико фарадах (пФ). Это вводит многих начинающих радиолюбителей в заблуждение и как следствие тормозит сборку электронного устройства.

Чтобы данной ситуации не происходило нужно научиться простым расчётам.

Чтобы не запутаться в микрофарадах, нанофарадах, пикофарадах нужно ознакомиться с таблицей размерности. Уверен, она вам ещё не раз пригодиться.

Данная таблица включает в себя десятичные кратные и дробные (дольные) приставки. Международная система единиц, которая носит сокращённое название СИ , включает шесть кратных (дека, гекто, кило, мега, гига, тера) и восемь дольных приставок (деци, санти, милли, микро, нано, пико, фемто, атто). Многие из этих приставок давно используются в электронике.

Множитель

Приставка

Наименование

Сокращённое обозначение

международное

1000 000 000 000 = 10 12

Тера

1000 000 000 = 10 9

Гига

1000 000 = 10 6

Мега

1000 = 10 3

кило

100 = 10 2

Гекто

10 = 10 1

дека

0,1 = 10 -1

деци

0,01 = 10 -2

санти

0,001 = 10 -3

милли

0,000 001 = 10 -6

микро

0,000 000 001 = 10 -9

нано

0,000 000 000 001 = 10 -12

пико

0,000 000 000 000 001 = 10 -15

фемто

0,000 000 000 000 000 001 = 10 -18

атто

Как пользоваться таблицей?

Как видим из таблицы, разница между многими приставками составляет ровно 1000. Так, например, такое правило действует между кратными величинами, начиная с приставки кило- .

  • Мега - 1 000 000

    Гига – 1 000 000 000

    Тера – 1 000 000 000 000

Так, если рядом с обозначением резистора написано 1 Мом (1 Мега ом), то его сопротивление составит – 1 000 000 (1 миллион) Ом. Если же имеется резистор с номинальным сопротивлением 1 кОм (1 кило ом), то в Омах это будет 1000 (1 тысяча) Ом.

Для дольных или по-другому дробных величин ситуация похожа, только происходит не увеличение численного значения, а его уменьшение.

Чтобы не запутаться в микрофарадах, нанофарадах, пикофарадах, нужно запомнить одно простое правило. Нужно понимать, что милли, микро, нано и пико – все они отличаются ровно на 1000 . То есть если вам говорят 47 микрофарад, то это значит, что в нанофарадах это будет в 1000 раз больше – 47 000 нанофарад. В пикофарадах это уже будет ещё на 1000 раз больше – 47 000 000 пикофарад. Как видим, разница между 1 микрофарадой и 1 пикофарадой составляет 1 000 000 раз.

Также на практике иногда требуется знать значение в микрофарадах, а значение ёмкости указано в нанофарадах. Так если ёмкость конденсатора 1 нанофарада, то в микрофарадах это будет 0,001 мкф. Если ёмкость 0,01 мкф., то в пикофарадах это будет 10 000 пФ, а в нанофарадах, соответственно, 10 нФ.

Приставки, обозначающие размерность величины служат для сокращённой записи. Согласитесь проще написать 1мА , чем 0,001 Ампер или, например, 400 мкГн , чем 0,0004 Генри.

В показанной ранее таблице также есть сокращённое обозначение приставки. Так, чтобы не писать Мега , пишут только букву М . За приставкой обычно следует сокращённое обозначение электрической величины. Например, слово Ампер не пишут, а указывают только букву А . Также поступают при сокращении записи единицы измерения ёмкости Фарада . В этом случае пишется только буква Ф .

Наравне с сокращённой записью на русском языке, которая часто используется в старой радиоэлектронной литературе , существует и международная сокращённая запись приставок. Она также указана в таблице.

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер паропроницаемости и скорости переноса пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 микро [мк] = 1000 нано [н]

Исходная величина

Преобразованная величина

без приставки йотта зетта экса пета тера гига мега кило гекто дека деци санти милли микро нано пико фемто атто зепто йокто

Метрическая система и Международная система единиц (СИ)

Введение

В этой статье мы поговорим о метрической системе и ее истории. Мы увидим как и почему она начиналась и как постепенно превратилась в то, что мы имеем сегодня. Мы также рассмотрим систему СИ, которая была разработана на основе метрической системы мер.

Для наших предков, которые жили в полном опасностей мире, возможность измерять различные величины в естественной среде обитания позволяла приблизиться к пониманию сущности явлений природы, познанию окружающей их среды и получению возможности хоть как-то влиять на то, что их окружало. Именно поэтому люди старались изобретать и улучшать различные системы измерений. На заре развития человечества иметь систему измерений было не менее важно, чем сейчас. Выполнять различные измерения необходимо было при постройке жилья, шитье одежды разных размеров, приготовлении пищи и, конечно, без измерения не могли обойтись торговля и обмен! Многие считают, что создание и принятие Международной системы единиц СИ является самым серьезным достижением не только науки и техники, но и вообще развития человечества.

Ранние системы измерений

В ранних системах мер и системах счисления люди использовали для измерения и сравнения традиционные объекты. Например, считается, что десятичная система появилась в связи с тем, что у нас по десять пальцев на руках и ногах. Наши руки всегда с нами - поэтому с древних времен люди использовали (да и сейчас используют) пальцы для счета. И все же мы не всегда использовали для счета систему с основанием 10, да и метрическая система является относительно новым изобретением. В каждом регионе появлялись свои системы единиц и, хотя у этих систем есть много общего, большинство систем все же настолько разные, что перевод единиц измерения из одной системы в другую всегда был проблемой. Эта проблема становилась все более серьезной по мере развития торговли между разными народами.

Точность первых систем мер и весов напрямую зависела от размеров предметов, которые окружали людей, разрабатывавших эти системы. Понятно, что измерения были неточными, так как «измерительные устройства» не имели точных размеров. Например, в качестве меры длины обычно использовались части тела; масса и объем измерялись с помощью объема и массы семян и других небольших предметов, размеры которых были более-менее одинаковы. Ниже мы подробнее рассмотрим такие единицы.

Меры длины

В Древнем Египте длина вначале измерялась просто локтями , а позже царскими локтями. Длина локтя определялась как отрезок от локтевого изгиба до конца вытянутого среднего пальца. Таким образом, царский локоть определялся как локоть царствующего фараона. Был создан образцовый локоть, который был доступен широкой публике, чтобы все могли изготовлять свои меры длины. Это, конечно, была произвольная единица, которая изменялась, когда новая царствующая особа занимала престол. В Древнем Вавилоне использовалась похожая система, но с небольшими отличиями.

Локоть делили на более мелкие единицы: ладонь , рука , зерец (фут), and теб (палец), которые были представлены соответственно шириной ладони, руки (с большим пальцем), ступни и пальца. В это же время решили договориться о том, сколько пальцев в ладони (4), в руке (5) и локте (28 в Египте и 30 в Вавилоне). Это было удобнее и точнее, чем каждый раз измерять соотношения.

Меры массы и веса

Меры веса также основывались на параметрах различных предметов. В качестве мер веса выступали семена, зерна, бобы и аналогичные предметы. Классическим примером единицы массы, которая используется до сих пор, является карат . Сейчас каратами измеряют массу драгоценных камней и жемчуга, а когда-то в качестве карата определили вес семян рожкового дерева, иначе называемого кэроб. Дерево культивируется в Средиземноморье, а семена его отличаются постоянством массы, поэтому их удобно было использовать в качестве меры веса и массы. В разных местах в качестве мелких единиц веса использовались разные семена, а бóльшие единицы обычно были кратны более мелким единицам. Археологи часто находят подобные большие меры веса, обычно изготовленные из камня. Они состояли из 60, 100 и иного количества мелких единиц. Поскольку единый стандарт по количеству мелких единиц, а также по их весу отсутствовал, это приводило к конфликтам, когда встречались продавцы и покупатели, которые жили в разных местах.

Меры объема

Первоначально объем также измеряли с помощью небольших предметов. Например, объем горшка или кувшина определяли, наполняя него доверху небольшими предметами относительно стандартного объема - вроде семян. Однако отсутствие стандартизации приводило к тем же проблемам при измерении объема, что и при измерении массы.

Эволюция различных систем мер

Древнегреческая система мер была основана на древнеегипетской и вавилонской, а римляне создавали свою систему на основе древнегреческой. Затем огнем и мечом и, конечно, в результате торговли эти системы распространялись по всей Европе. Следует отметить, что здесь мы говорим только о самых распространенных системах. А ведь было множество других систем мер и весов, потому что обмен и торговля были необходимы абсолютно всем. Если же в данной местности отсутствовала письменность или не было принято записывать результаты обмена, то мы можем только догадываться о том, как эти люди измеряли объем и вес.

Существует множество региональных вариантов систем мер и вес. Связано это с их независимым развитием и влиянием на них других систем в результате торговли и завоевания. Различные системы были не только в разных странах, но часто и в пределах одной страны, где в каждом торговом городе они были свои, потому что местные правители не желали унификации, чтобы сохранить свою власть. По мере развития путешествий, торговли, промышленности и науки многие страны стремились к унификации систем мер и весов, по крайней мере, на территориях своих стран.

Уже в XIII в., а возможно и ранее, ученые и философы обсуждали создание единой системы измерений. Однако только в после Французской революции и последующей колонизации различных регионов мира Францией и другими европейскими странами, в которых уже были свои системы мер и весов, была разработана новая система, принятая в большинстве стран мира. Этой новой системой была десятичная метрическая система . Она была основана на основании 10, то есть для любой физической величины в ней существовала одна основная единица, а все остальные единицы можно было образовывать стандартным образом с помощью десятичных приставок. Каждую такую дробную или кратную единицу можно было разделить на десять меньших единиц, а эти меньшие единицы, в свою очередь, можно было разделить на 10 еще меньших единиц и так далее.

Как мы знаем, большинство ранних систем измерения не было основано на основании 10. Удобство системы с основанием 10 заключается в том, что такое же основание имеет привычная нам система счисления, что позволяет быстро и удобно по простым и привычным правилам осуществлять перевод из меньших единиц в большие и наоборот. Многие ученые считают, что выбор десяти в качестве основания системы счисления произволен и связан только с тем, что у нас десять пальцев и если бы у нас было иное количество пальцев, то мы бы наверняка пользовались другой системой счисления.

Метрическая система

На заре развития метрической системы в качестве мер длины и веса использовались изготовленные человеком прототипы, как и в предыдущих системах. Метрическая система прошла эволюцию от системы, основанной на вещественных эталонах и зависимости от их точности к системе, основанной на естественных явлениях и фундаментальных физических постоянных. Например, единица времени секунда была определена вначале как часть тропического 1900 года. Недостатком такого определения была невозможность экспериментальной проверки этой константы в последующие годы. Поэтому секунду переопределили как определенное число периодов излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния радиоактивного атома цезия-133, находящегося в покое при 0 K. Единица расстояния, метр, была связана с длиной волны линии спектра излучения изотопа криптона-86, однако позже метр был переопределен как расстояние, которое проходит свет в вакууме за промежуток времени, равный 1/299 792 458 секунды.

На основе метрической системы была создана Международная система единиц (СИ). Следует отметить, что традиционно метрическая система включает единицы массы, длины и времени, однако в системе СИ количество базовых единиц расширено до семи. Мы обсудим их ниже.

Международная система единиц (СИ)

Международная система единиц (СИ) имеет семь основных единиц для измерения основных величин (массы, времени, длины, силы света, количества вещества, силы электрического тока, термодинамической температуры). Это килограмм (кг) для измерения массы, секунда (с) для измерения времени, метр (м) для измерения расстояния, кандела (кд) для измерения силы света, моль (сокращение моль) для измерения количества вещества, ампер (A) для измерения силы электрического тока, and кельвин (K) для измерения температуры.

В настоящее время только килограмм все еще имеет изготовленный человеком эталон, в то время как остальные единицы основаны на универсальных физических постоянных или на естественных явлениях. Это удобно, потому что физические постоянные или естественные явления, на которых основаны единицы измерения, легко проверить в любое время; к тому же нет опасности утраты или повреждения эталонов. Также нет необходимости в создании копий эталонов, чтобы обеспечить их доступность в разных точках планеты. Это позволяет избавиться от ошибок, связанных с точностью изготовления копий физических объектов, и, таким образом, обеспечивает бóльшую точность.

Десятичные приставки

Для формирования кратных и дольных единиц, отличающихся от базовых единиц системы СИ в определенное целое число раз, являющееся степенью десяти, в ней используются приставки, присоединяемые к названию базовой единицы. Ниже приводится список всех используемых в настоящее время приставок и десятичные множители, которые они обозначают:

Приставка Символ Численное значение; запятыми здесь разделяются группы разрядов, а десятичный разделитель - точка. Экспоненциальная запись
йотта Й 1 000 000 000 000 000 000 000 000 10 24
зетта З 1 000 000 000 000 000 000 000 10 21
экса Э 1 000 000 000 000 000 000 10 18
пета П 1 000 000 000 000 000 10 15
тера Т 1 000 000 000 000 10 12
гига Г 1 000 000 000 10 9
мега М 1 000 000 10 6
кило к 1 000 10 3
гекто г 100 10 2
дека да 10 10 1
без приставки 1 10 0
деци д 0,1 10 -1
санти с 0,01 10 -2
милли м 0,001 10 -3
микро мк 0,000001 10 -6
нано н 0,000000001 10 -9
пико п 0,000000000001 10 -12
фемто ф 0,000000000000001 10 -15
атто а 0,000000000000000001 10 -18
зепто з 0,000000000000000000001 10 -21
йокто и 0,000000000000000000000001 10 -24

Например, 5 гигаметров равно 5 000 000 000 метров, в то время как 3 микроканделы равны 0,000003 канделы. Интересно отметить, что, несмотря на наличие приставки в единице килограмм, она является базовой единицей СИ. Поэтому указанные выше приставки применяются с граммом, как будто он является базовой единицей.

На момент написания этой статьи остались только три страны, которые не приняли систему СИ: США, Либерия и Мьянма. В Канаде и Великобритании традиционные единицы все еще широко используются, несмотря на то, что система СИ в этих странах является официальной системой единиц. Достаточно зайти в магазин и увидеть ценники за фунт товара (так ведь дешевле получается!), или попытаться купить стройматериалы, измеряемые в метрах и килограммах. Не выйдет! Не говоря уже об упаковке товаров, где все подписано в граммах, килограммах и литрах, но не в целых, а переведенных из фунтов, унций, пинт и кварт. Место для молока в холодильниках тоже рассчитывается на полгаллона или галлон, а не на литровую молочную упаковку.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Расчеты для перевода единиц в конвертере «Конвертер десятичных приставок » выполняются с помощью функций unitconversion.org .

Д.т.н., академик РАЕН, А.И. ХЕСИН

Термин "нано-технологии" в 1974 году предложил японец Норё Танигути для описания процесса построения новых объектов и материалов при помощи манипуляций с отдельными атомами. Нанометр - одна миллиардная часть метра. Размер атома - несколько десятых нанометра Все предыдущие научно-технические революции сводились к тому, что человек все более умело копировал механизмы и материалы, созданные Природой. Прорыв в область нано-технологий - совсем другое дело. Впервые человек будет создавать новую материю, которая Природе была неизвестна и недоступна Фактически наука подошла к моделированию принципов построения живой материи, которая основана на самоорганизации и саморегуляции. Уже освоенный метод создания структур с помощью квантовых точек - это и есть самоорганизация. Переворот в цивилизации - создание бионических приборов.

Для понятия нано-технология, пожалуй, не существует исчерпывающего определения, но по аналогии с существующими ныне микро-технологиями следует, что нано-технологии - это технологии, оперирующие величинами порядка нанометра. Это ничтожно малая величина, в сотни раз меньшая длины волны видимого света и сопоставимая с размерами атомов. Поэтому переход от "микро" к "нано" - это уже не количественный, а качественный переход - скачок от манипуляции веществом к манипуляции отдельными атомами.

Международная система единиц (СИ) происхождение наименований приставок.

Первые приставки были введены в 1793-1795гг. при узаконении во Франции метрической системы мер. Было принято для кратных единиц наименования приставок брать из греческого языка, для дольных - из латинского. В те годы были приняты следующие приставки: кило... (от греч. chilioi - тысяча), гекто ... (от греч. hekaton - сто), дека... (от греч. deka - десять), деци ... (от лат. decem - десять), санти ... (от лат. centum - сто), милли ... (от лат. mille - тысяча). В последующие годы число кратных и дольных единиц увеличилось; наименования приставок для их обозначения заимствовались иногда и из других языков. Появились следующие приставки: мега... (от греч. megas - большой), гига ... (от греч. gigas, gigantos - великан), тера... (от греч. teras, teratos - огромный, чудовище), микро... (от греч. mikros - малый, маленький), нано... (от греч. nanos - карлик), пико... (от итал. piccolo - небольшой, мелкий), фемто... (от датск. femten - пятнадцать), атто ... (от датск. atten - восемнадцать). Последние две приставки пета... и экса... - были приняты в 1975г.: "пета" ... (от греч. peta - пять, что соответсвует пяти разрядам по 10 3), "экса" ... (от греч. hex - шесть, что соответсвует шести разрядам по 10 3). Зепто - (zepto - ) — дольная метрическая приставка, обозначающая 10 −21 . Йокто- (yocto - ) — дольная метрическая приставка, обозначающая 10 −24 . Для наглядности приведем таблицу:

Приставка

Обозначение приставки

Множитель

Натменование множителя

русское

международное

10 18 =1000000000000000000

квинтиллион

10 15 =1000000000000000

квадриллион

10 12 =1000000000000

триллион

10 9 =1000000000

миллиард

одна десятая

одна сотая

одна тысячная

одна миллионная

10 -9 =0,000000001

одна миллиардная

10 -12 =0,000000000001

одная триллионная

10 -15 =0,000000000000001

одна квадриллионная

10 -18 =0,000000000000000001

одна квинтиллионная

Когда речь идет о развитии нано-технологий, имеются в виду три направления:

  • изготовление электронных схем (в том числе и объемных) с активными элементами, размерами сравнимыми с размерами молекул и атомов;
  • разработка и изготовление нано-машин, т.е. механизмов и роботов размером с молекулу;
  • непосредственная манипуляция атомами и молекулами и сборка из них всего существующего.

В то же время, сейчас активно развиваются нано-технологические методы, позволяющие создавать активные элементы (транзисторы, диоды) размером с молекулу и формировать из них многослойные трехмерные схемы. Возможно, именно микроэлектроника будет первой отраслью, где "атомная сборка" будет осуществлена в промышленных масштабах.

Хотя сейчас в нашем распоряжении и имеются средства для манипуляций отдельными атомами, вряд ли их можно "напрямую" применять для того, чтобы собрать что-либо практически необходимое: уже хотя бы только из-за количества атомов, которые придется "монтировать".

Однако возможностей существующих технологий уже достаточно, чтобы соорудить из нескольких молекул некие простейшие механизмы, которые, руководствуясь управляющими сигналами извне (акустическими, электромагнитными и пр.), смогут манипулировать другими молекулами и создавать себе подобные устройства или более сложные механизмы.

Те, в свою очередь, смогут изготовить еще более сложные устройства и т.д. в конце концов этот экспоненциальный процесс приведет к созданию молекулярных роботов - механизмов, сравнимых по размерам с крупной молекулой и обладающих собственным встроенным компьютером.

Д.т.н., академик РАЕН, А.И. ХЕСИН

Термин "нано-технологии" в 1974 году предложил японец Норё Танигути для описания процесса построения новых объектов и материалов при помощи манипуляций с отдельными атомами. Нанометр - одна миллиардная часть метра. Размер атома - несколько десятых нанометра Все предыдущие научно-технические революции сводились к тому, что человек все более умело копировал механизмы и материалы, созданные Природой. Прорыв в область нано-технологий - совсем другое дело. Впервые человек будет создавать новую материю, которая Природе была неизвестна и недоступна Фактически наука подошла к моделированию принципов построения живой материи, которая основана на самоорганизации и саморегуляции. Уже освоенный метод создания структур с помощью квантовых точек - это и есть самоорганизация. Переворот в цивилизации - создание бионических приборов.

Для понятия нано-технология, пожалуй, не существует исчерпывающего определения, но по аналогии с существующими ныне микро-технологиями следует, что нано-технологии - это технологии, оперирующие величинами порядка нанометра. Это ничтожно малая величина, в сотни раз меньшая длины волны видимого света и сопоставимая с размерами атомов. Поэтому переход от "микро" к "нано" - это уже не количественный, а качественный переход - скачок от манипуляции веществом к манипуляции отдельными атомами.

Международная система единиц (СИ) происхождение наименований приставок.

Первые приставки были введены в 1793-1795гг. при узаконении во Франции метрической системы мер. Было принято для кратных единиц наименования приставок брать из греческого языка, для дольных - из латинского. В те годы были приняты следующие приставки: кило... (от греч. chilioi - тысяча), гекто ... (от греч. hekaton - сто), дека... (от греч. deka - десять), деци ... (от лат. decem - десять), санти ... (от лат. centum - сто), милли ... (от лат. mille - тысяча). В последующие годы число кратных и дольных единиц увеличилось; наименования приставок для их обозначения заимствовались иногда и из других языков. Появились следующие приставки: мега... (от греч. megas - большой), гига ... (от греч. gigas, gigantos - великан), тера... (от греч. teras, teratos - огромный, чудовище), микро... (от греч. mikros - малый, маленький), нано... (от греч. nanos - карлик), пико... (от итал. piccolo - небольшой, мелкий), фемто... (от датск. femten - пятнадцать), атто ... (от датск. atten - восемнадцать). Последние две приставки пета... и экса... - были приняты в 1975г.: "пета" ... (от греч. peta - пять, что соответсвует пяти разрядам по 10 3), "экса" ... (от греч. hex - шесть, что соответсвует шести разрядам по 10 3). Зепто - (zepto - ) — дольная метрическая приставка, обозначающая 10 −21 . Йокто- (yocto - ) — дольная метрическая приставка, обозначающая 10 −24 . Для наглядности приведем таблицу:

Приставка

Обозначение приставки

Множитель

Натменование множителя

русское

международное

10 18 =1000000000000000000

квинтиллион

10 15 =1000000000000000

квадриллион

10 12 =1000000000000

триллион

10 9 =1000000000

миллиард

одна десятая

одна сотая

одна тысячная

одна миллионная

10 -9 =0,000000001

одна миллиардная

10 -12 =0,000000000001

одная триллионная

10 -15 =0,000000000000001

одна квадриллионная

10 -18 =0,000000000000000001

одна квинтиллионная

Когда речь идет о развитии нано-технологий, имеются в виду три направления:

  • изготовление электронных схем (в том числе и объемных) с активными элементами, размерами сравнимыми с размерами молекул и атомов;
  • разработка и изготовление нано-машин, т.е. механизмов и роботов размером с молекулу;
  • непосредственная манипуляция атомами и молекулами и сборка из них всего существующего.

В то же время, сейчас активно развиваются нано-технологические методы, позволяющие создавать активные элементы (транзисторы, диоды) размером с молекулу и формировать из них многослойные трехмерные схемы. Возможно, именно микроэлектроника будет первой отраслью, где "атомная сборка" будет осуществлена в промышленных масштабах.

Хотя сейчас в нашем распоряжении и имеются средства для манипуляций отдельными атомами, вряд ли их можно "напрямую" применять для того, чтобы собрать что-либо практически необходимое: уже хотя бы только из-за количества атомов, которые придется "монтировать".

Однако возможностей существующих технологий уже достаточно, чтобы соорудить из нескольких молекул некие простейшие механизмы, которые, руководствуясь управляющими сигналами извне (акустическими, электромагнитными и пр.), смогут манипулировать другими молекулами и создавать себе подобные устройства или более сложные механизмы.

Те, в свою очередь, смогут изготовить еще более сложные устройства и т.д. в конце концов этот экспоненциальный процесс приведет к созданию молекулярных роботов - механизмов, сравнимых по размерам с крупной молекулой и обладающих собственным встроенным компьютером.

mob_info