Из одной сс в другую. Перевод из одной системы счисления в другую

Назначение сервиса . Сервис предназначен для перевода чисел из одной системы счисления в другую в онлайн режиме. Для этого выберите основание системы, из которой необходимо перевести число. Вводить можно как целые, так и числа с запятой.

Можно вводить как целые числа, например 34 , так и дробные, например, 637.333 . Для дробных чисел указывается точность перевода после запятой.

Вместе с этим калькулятором также используют следующие:

Способы представления чисел

Двоичные (binary) числа – каждая цифра означает значение одного бита (0 или 1), старший бит всегда пишется слева, после числа ставится буква «b». Для удобства восприятия тетрады могут быть разделены пробелами. Например, 1010 0101b.
Шестнадцатеричные (hexadecimal) числа – каждая тетрада представляется одним символом 0...9, А, В, ..., F. Обозначаться такое представление может по-разному, здесь используется только символ «h» после последней шестнадцатеричной цифры. Например, A5h. В текстах программ это же число может обозначаться и как 0хА5, и как 0A5h, в зависимости от синтаксиса языка программирования. Незначащий ноль (0) добавляется слева от старшей шестнадцатеричной цифры, изображаемой буквой, чтобы различать числа и символические имена.
Десятичные (decimal) числа – каждый байт (слово, двойное слово) представляется обычным числом, а признак десятичного представления (букву «d») обычно опускают. Байт из предыдущих примеров имеет десятичное значение 165. В отличие от двоичной и шестнадцатеричной формы записи, по десятичной трудно в уме определить значение каждого бита, что иногда приходится делать.
Восьмеричные (octal) числа – каждая тройка бит (разделение начинается с младшего) записывается в виде цифры 0–7, в конце ставится признак «о». То же самое число будет записано как 245о. Восьмеричная система неудобна тем, что байт невозможно разделить поровну.

Алгоритм перевода чисел из одной системы счисления в другую

Перевод целых десятичных чисел в любую другую системы счисления осуществляется делением числа на основание новой системы счисления до тех пор, пока в остатке не останется число меньшее основания новой системы счис­ления. Новое число записывается в виде остатков деления, начиная с последнего.
Перевод правильной десятичной дроби в другую ПСС осуществляется умножением только дробной части числа на основание новой системы счисления до тех пор пока в дробной части не останутся все нули или пока не будет достигнута заданная точность перевода. В результате выполнения каждой операции умножения формируется одна цифра нового числа начиная со старшего.
Перевод неправильной дроби осуществляется по 1 и 2 правилу. Целую и дробную часть записывают вместе, отделяя запятой.

Пример №1 .



Перевод из 2 в 8 в 16 системы счисления.
Эти системы кратны двум, следовательно, перевод осуществляется с использованием таблицы соответствия (см. ниже).

Для перевода числа из двоичной системы счисления в восьмиричную (шестнадцатиричную) необходимо от запятой вправо и влево разбить двоичное число на группы по три (четыре – для шестнадцатиричной) разряда, дополняя при необходимости нулями крайние группы. Каждую группу заменяют соответствующей восьмиричной или шестнадцатиричной цифрой.

Пример №2 . 1010111010,1011 = 1.010.111.010,101.1 = 1272,51 8
здесь 001=1; 010=2; 111=7; 010=2; 101=5; 001=1

При переводе в шестнадцатеричную систему необходимо делить число на части, по четыре цифры, соблюдая те же правила.
Пример №3 . 1010111010,1011 = 10.1011.1010,1011 = 2B12,13 HEX
здесь 0010=2; 1011=B; 1010=12; 1011=13

Перевод чисел из 2 , 8 и 16 в десятичную систему исчисления производят путем разбивания числа на отдельные и умножения его на основание системы (из которой переводится число) возведенное в степень соответствующую его порядковому номеру в переводимом числе. При этом числа нумеруются влево от запятой (первое число имеет номер 0) с возрастанием, а в правую сторону с убыванием (т.е. с отрицательным знаком). Полученные результаты складываются.

Пример №4 .
Пример перевода из двоичной в десятичную систему счисления.

1010010,101 2 = 1·2 6 +0·2 5 +1·2 4 +0·2 3 +0·2 2 +1·2 1 +0·2 0 + 1·2 -1 +0·2 -2 +1·2 -3 =
= 64+0+16+0+0+2+0+0.5+0+0.125 = 82.625 10 Пример перевода из восьмеричной в десятичную систему счисления. 108.5 8 = 1*·8 2 +0·8 1 +8·8 0 + 5·8 -1 = 64+0+8+0.625 = 72.625 10 Пример перевода из шестнадцатеричной в десятичную систему счисления. 108.5 16 = 1·16 2 +0·16 1 +8·16 0 + 5·16 -1 = 256+0+8+0.3125 = 264.3125 10

Еще раз повторим алгоритм перевода чисел из одной системы счисления в другую ПСС

  1. Из десятичной системы счисления:
    • разделить число на основание переводимой системы счисления;
    • найти остаток от деления целой части числа;
    • записать все остатки от деления в обратном порядке;
  2. Из двоичной системы счисления
    • Для перевода в десятичную систему счисления необходимо найти сумму произведений основания 2 на соответствующую степень разряда;
    • Для перевода числа в восьмеричную необходимо разбить число на триады.
      Например, 1000110 = 1 000 110 = 106 8
    • Для перевода числа из двоичной системы счисления в шестнадцатеричную необходимо разбить число на группы по 4 разряда.
      Например, 1000110 = 100 0110 = 46 16
Позиционной называется система , для которой значимость или вес цифры зависит от ее места расположения в числе. Соотношение между системами выражается таблицей.
Таблица соответствия систем счисления:
Двоичная СС Шестнадцатеричная СС
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

Таблица для перевода в восьмеричную систему счисления

Пример №2 . Перевести число 100,12 из десятичной системы счисления в восьмеричную систему счисления и обратно. Пояснить причины расхождений.
Решение .
1 Этап. .

Остаток от деления записываем в обратном порядке. Получаем число в 8-ой системе счисления: 144
100 = 144 8

Для перевода дробной части числа последовательно умножаем дробную часть на основание 8. В результате каждый раз записываем целую часть произведения.
0.12*8 = 0.96 (целая часть 0 )
0.96*8 = 7.68 (целая часть 7 )
0.68*8 = 5.44 (целая часть 5 )
0.44*8 = 3.52 (целая часть 3 )
Получаем число в 8-ой системе счисления: 0753.
0.12 = 0.753 8

100,12 10 = 144,0753 8

2 Этап. Перевод числа из десятичной системы счисления в восьмеричную систему счисления .
Обратный перевод из восьмеричной системы счислений в десятичную.

Для перевода целой части необходимо умножить разряд числа на соответствующую ему степень разряда.
144 = 8 2 *1 + 8 1 *4 + 8 0 *4 = 64 + 32 + 4 = 100

Для перевода дробной части необходимо разделить разряд числа на соответствующую ему степень разряда
0753 = 8 -1 *0 + 8 -2 *7 + 8 -3 *5 + 8 -4 *3 = 0.119873046875 = 0.1199

144,0753 8 = 100,96 10
Разница в 0,0001 (100,12 - 100,1199) объясняется погрешностью округлений при переводе в восьмеричную систему счислений. Эту погрешность можно уменьшить, если взять большее число разрядов (например, не 4, а 8).

Сдающим ЕГЭ и не только…

Странно, что в школах на уроках информатики обычно показывают ученикам самый сложный и неудобный способ перевода чисел из одной системы в другую. Это способ заключается в последовательном делении исходного числа на основание и сборе остатков от деления в обратном порядке.

Например, нужно перевести число 810 10 в двоичную систему:

Результат записываем в обратном порядке снизу вверх. Получается 81010 = 11001010102

Если нужно переводить в двоичную систему довольно большие числа, то лестница делений приобретает размер многоэтажного дома. И как тут собрать все единички с нулями и ни одной не пропустить?

В программу ЕГЭ по информатике входят несколько задач, связанных с переводом чисел из одной системы в другую. Как правило, это преобразование между 8- и 16-ричными системами и двоичной. Это разделы А1, В11. Но есть и задачи с другими системами счисления, как например, в разделе B7.

Для начала напомним две таблицы, которые хорошо бы знать наизусть тем, кто выбирает информатику своей дальнейшей профессией.

Таблица степеней числа 2:

2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10
2 4 8 16 32 64 128 256 512 1024

Она легко получается умножением предыдущего числа на 2. Так, что если помните не все эти числа, остальные нетрудно получить в уме из тех, которые помните.

Таблица двоичных чисел от 0 до 15 c 16-ричным представлением:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
0 1 2 3 4 5 6 7 8 9 A B C D E F

Недостающие значения тоже нетрудно вычислить, прибавляя по 1 к известным значениям.

Перевод целых чисел

Итак, начнем с перевода сразу в двоичную систему. Возьмём то же число 810 10 . Нам нужно разложить это число на слагаемые, равные степеням двойки.

  1. Ищем ближайшую к 810 степень двойки, не превосходящую его. Это 2 9 = 512.
  2. Вычитаем 512 из 810, получаем 298.
  3. Повторим шаги 1 и 2, пока не останется 1 или 0.
  4. У нас получилось так: 810 = 512 + 256 + 32 + 8 + 2 = 2 9 + 2 8 + 2 5 + 2 3 + 2 1 .
Далее есть два способа, можно использовать любой из них. Как легко увидеть, что в любой системе счисления её основание всегда 10. Квадрат основания всегда будет 100, куб 1000. То есть степень основания системы счисления - это 1 (единица), и за ней столько нулей, какова степень.

Способ 1 : Расставить 1 по тем разрядам, какие получились показатели у слагаемых. В нашем примере это 9, 8, 5, 3 и 1. В остальных местах будут стоять нули. Итак, мы получили двоичное представление числа 810 10 = 1100101010 2 . Единицы стоят на 9-м, 8-м, 5-м, 3-м и 1-м местах, считая справа налево с нуля.

Способ 2 : Распишем слагаемые как степени двойки друг под другом, начиная с большего.

810 =

А теперь сложим эти ступеньки вместе, как складывают веер: 1100101010 .

Вот и всё. Попутно также просто решается задача «сколько единиц в двоичной записи числа 810?».

Ответ - столько, сколько слагаемых (степеней двойки) в таком его представлении. У 810 их 5.

Теперь пример попроще.

Переведём число 63 в 5-ричную систему счисления. Ближайшая к 63 степень числа 5 - это 25 (квадрат 5). Куб (125) будет уже много. То есть 63 лежит между квадратом 5 и кубом. Тогда подберем коэффициент для 5 2 . Это 2.

Получаем 63 10 = 50 + 13 = 50 + 10 + 3 = 2 * 5 2 + 2 * 5 + 3 = 223 5 .

Ну и, наконец, совсем лёгкие переводы между 8- и 16-ричными системами. Так как их основанием является степень двойки, то перевод делается автоматически, просто заменой цифр на их двоичное представление. Для 8-ричной системы каждая цифра заменяется тремя двоичными разрядами, а для 16-ричной четырьмя. При этом все ведущие нули обязательны, кроме самого старшего разряда.

Переведем в двоичную систему число 547 8 .

547 8 = 101 100 111
5 4 7

Ещё одно, например 7D6A 16 .

7D6A 16 = (0)111 1101 0110 1010
7 D 6 A

Переведем в 16-ричную систему число 7368. Сначала цифры запишем тройками, а потом поделим их на четверки с конца: 736 8 = 111 011 110 = 1 1101 1110 = 1DE 16 . Переведем в 8-ричную систему число C25 16 . Сначала цифры запишем четвёрками, а потом поделим их на тройки с конца: C25 16 = 1100 0010 0101 = 110 000 100 101 = 6045 8 . Теперь рассмотрим перевод обратно в десятичную. Он труда не представляет, главное не ошибиться в расчётах. Раскладываем число на многочлен со степенями основания и коэффициентами при них. Потом всё умножаем и складываем. E68 16 = 14 * 16 2 + 6 * 16 + 8 = 3688 . 732 8 = 7 * 8 2 + 3*8 + 2 = 474 .

Перевод отрицательных чисел

Здесь нужно учесть, что число будет представлено в дополнительном коде. Для перевода числа в дополнительный код нужно знать конечный размер числа, то есть во что мы хотим его вписать - в байт, в два байта, в четыре. Старший разряд числа означает знак. Если там 0, то число положительное, если 1, то отрицательное. Слева число дополняется знаковым разрядом. Беззнаковые (unsigned) числа мы не рассматриваем, они всегда положительные, а старший разряд в них используется как информационный.

Для перевода отрицательного числа в двоичный дополнительный код нужно перевести положительное число в двоичную систему, потом поменять нули на единицы и единицы на нули. Затем прибавить к результату 1.

Итак, переведем число -79 в двоичную систему. Число займёт у нас один байт.

Переводим 79 в двоичную систему, 79 = 1001111. Дополним слева нулями до размера байта, 8 разрядов, получаем 01001111. Меняем 1 на 0 и 0 на 1. Получаем 10110000. К результату прибавляем 1, получаем ответ 10110001 . Попутно отвечаем на вопрос ЕГЭ «сколько единиц в двоичном представлении числа -79?». Ответ - 4.

Прибавление 1 к инверсии числа позволяет устранить разницу между представлениями +0 = 00000000 и -0 = 11111111. В дополнительном коде они будут записаны одинаково 00000000.

Перевод дробных чисел

Дробные числа переводятся способом, обратным делению целых чисел на основание, который мы рассмотрели в самом начале. То есть при помощи последовательного умножения на новое основание с собиранием целых частей. Полученные при умножении целые части собираются, но не участвуют в следующих операциях. Умножаются только дробные. Если исходное число больше 1, то целая и дробная части переводятся отдельно, потом склеиваются.

Переведем число 0,6752 в двоичную систему.

0 ,6752
*2
1 ,3504
*2
0 ,7008
*2
1 ,4016
*2
0 ,8032
*2
1 ,6064
*2
1 ,2128

Процесс можно продолжать долго, пока не получим все нули в дробной части или будет достигнута требуемая точность. Остановимся пока на 6-м знаке.

Получается 0,6752 = 0,101011 .

Если число было 5,6752, то в двоичном виде оно будет 101,101011 .

Калькулятор позволяет переводить целые и дробные числа из одной системы счисления в другую. Основание системы счисления не может быть меньше 2 и больше 36 (10 цифр и 26 латинских букв всё-таки). Длина чисел не должна превышать 30 символов. Для ввода дробных чисел используйте символ. или, . Чтобы перевести число из одной системы в другую, введите исходное число в первое поле, основание исходной системы счисления во второе и основание системы счисления, в которую нужно перевести число, в третье поле, после чего нажмите кнопку "Получить запись".

Исходное число записано в 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 -ой системе счисления .

Хочу получить запись числа в 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 -ой системе счисления .

Получить запись

Выполнено переводов: 3036712

Также может быть интересно:

  • Калькулятор таблицы истинности. СДНФ. СКНФ. Полином Жегалкина

Системы счисления

Системы счисления делятся на два типа: позиционные и не позиционные . Мы пользуемся арабской системой, она является позиционной, а есть ещё римская − она как раз не позиционная. В позиционных системах положение цифры в числе однозначно определяет значение этого числа. Это легко понять, рассмотрев на примере какого-нибудь числа.

Пример 1 . Возьмём число 5921 в десятичной системе счисления. Пронумеруем число справа налево начиная с нуля:

Число 5921 можно записать в следующем виде: 5921 = 5000+900+20+1 = 5·10 3 +9·10 2 +2·10 1 +1·10 0 . Число 10 является характеристикой, определяющей систему счисления. В качестве степеней взяты значения позиции данного числа.

Пример 2 . Рассмотрим вещественное десятичное число 1234.567. Пронумеруем его начиная с нулевой позиции числа от десятичной точки влево и вправо:

Число 1234.567 можно записать в следующем виде: 1234.567 = 1000+200+30+4+0.5+0.06+0.007 = 1·10 3 +2·10 2 +3·10 1 +4·10 0 +5·10 -1 +6·10 -2 +7·10 -3 .

Перевод чисел из одной системы счисления в другую

Наиболее простым способом перевода числа с одной системы счисления в другую, является перевод числа сначала в десятичную систему счисления, а затем, полученного результата в требуемую систему счисления.

Перевод чисел из любой системы счисления в десятичную систему счисления

Для перевода числа из любой системы счисления в десятичную достаточно пронумеровать его разряды, начиная с нулевого (разряд слева от десятичной точки) аналогично примерам 1 или 2. Найдём сумму произведений цифр числа на основание системы счисления в степени позиции этой цифры:

1. Перевести число 1001101.1101 2 в десятичную систему счисления.
Решение: 10011.1101 2 = 1·2 4 +0·2 3 +0·2 2 +1·2 1 +1·2 0 +1·2 -1 +1·2 -2 +0·2 -3 +1·2 -4 = 16+2+1+0.5+0.25+0.0625 = 19.8125 10
Ответ: 10011.1101 2 = 19.8125 10

2. Перевести число E8F.2D 16 в десятичную систему счисления.
Решение: E8F.2D 16 = 14·16 2 +8·16 1 +15·16 0 +2·16 -1 +13·16 -2 = 3584+128+15+0.125+0.05078125 = 3727.17578125 10
Ответ: E8F.2D 16 = 3727.17578125 10

Перевод чисел из десятичной системы счисления в другую систему счисления

Для перевода чисел из десятичной системы счисления в другую систему счисления целую и дробную части числа нужно переводить отдельно.

Перевод целой части числа из десятичной системы счисления в другую систему счисления

Целая часть переводится из десятичной системы счисления в другую систему счисления с помощью последовательного деления целой части числа на основание системы счисления до получения целого остатка, меньшего основания системы счисления. Результатом перевода будет являться запись из остатков, начиная с последнего.

3. Перевести число 273 10 в восьмиричную систему счисления.
Решение: 273 / 8 = 34 и остаток 1, 34 / 8 = 4 и остаток 2, 4 меньше 8, поэтому вычисления завершены. Запись из остатков будет иметь следующий вид: 421
Проверка : 4·8 2 +2·8 1 +1·8 0 = 256+16+1 = 273 = 273 , результат совпал. Значит перевод выполнен правильно.
Ответ: 273 10 = 421 8

Рассмотрим перевод правильных десятичных дробей в различные системы счисления.

Перевод дробной части числа из десятичной системы счисления в другую систему счисления

Напомним, правильной десятичной дробью называется вещественное число с нулевой целой частью . Чтобы перевести такое число в систему счисления с основанием N нужно последовательно умножать число на N до тех пор, пока дробная часть не обнулится или же не будет получено требуемое количество разрядов. Если при умножении получается число с целой частью, отличное от нуля, то целая часть дальше не учитывается, так как последовательно заносится в результат.

4. Перевести число 0.125 10 в двоичную систему счисления.
Решение: 0.125·2 = 0.25 (0 - целая часть, которая станет первой цифрой результата), 0.25·2 = 0.5 (0 - вторая цифра результата), 0.5·2 = 1.0 (1 - третья цифра результата, а так как дробная часть равна нулю, то перевод завершён).
Ответ: 0.125 10 = 0.001 2

Люди не сразу научились считать. Первобытное общество ориентировалось на незначительное число предметов - один или два. Все, что было больше, по умолчанию наименовалось "много". Именно это считается началом современной системы исчисления.

Краткая историческая справка

В процессе развития цивилизации у людей стала появляться необходимость разделять небольшие совокупности предметов, объединенные общими признаками. Стали возникать соответствующие понятия: "три", "четыре" и так далее до "семи". Однако это был закрытый, ограниченный ряд, последнее понятие в котором продолжало нести смысловую нагрузку более раннего "много". Ярким примером этого является народный фольклор, дошедший до нас в первозданном виде (например, пословица "Семь раз отмерь - один раз отрежь").

Возникновение сложных способов счета

С течением времени жизнь и все процессы деятельности людей усложнялись. Это привело, в свою очередь, к возникновению более сложной системы исчисления. При этом люди использовали для наглядности выражения простейшие инструменты счета. Находили они их вокруг себя: они чертили палочки на стенах пещеры подручными средствами, делали зарубки, выкладывали интересующие их числа из палок и камней - вот лишь небольшой список существовавшего тогда многообразия. В дальнейшем современными учеными данному виду было присвоено уникальное название "унарная система исчисления". Ее суть состоит в записи числа с применением единственного вида знаков. Сегодня это наиболее удобная система, позволяющая визуально сопоставлять количество предметов и знаков. Наибольшее распространение она получила в начальных классах школ (счетные палочки). Наследством "камешкового счета" можно смело считать современные аппараты в их различных модификациях. Интересно и возникновение современного слова "калькуляция", корни которого идут от латинского calculus, что переводится не иначе как "камешек".

Счет на пальцах

В условиях крайне скудного словарного запаса первобытного человека жесты довольно часто служили важным дополнением к передаваемой информации. Преимущество пальцев было в их универсальности и в постоянном нахождении с объектом, который хотел передать информацию. Однако здесь есть и существенные недостатки: значительная ограниченность и кратковременность передачи. Поэтому весь счет людей, пользовавшихся "пальцевым способом", ограничивался цифрами, кратными количеству пальцев: 5 - соответствует количеству пальцев на одной руке; 10 - на обеих руках; 20 - общее количество на руках и ногах. Благодаря сравнительно медленному развитию числового запаса данная система просуществовала достаточно долгий временной промежуток.

Первые усовершенствования

С развитием системы исчисления и расширением возможностей и потребностей человечества максимальным используемым числом в культурах многих народов стало 40. Под ним также понималось неопределенное (не поддающееся счету) количество. На Руси широкое распространение получило выражение "сорок сороков". Его смысл сводился к количеству предметов, которое невозможно посчитать. Следующая ступень развития - это появление числа 100. Далее началось деление на десятки. Впоследствии стали появляться числа 1000, 10 000 и так далее, каждое из которых несло смысловую нагрузку, аналогичную семи и сорока. В современном мире границы конечного счета не определены. На сегодняшний день введено универсальное понятие "бесконечность".

Целые и дробные числа

Современные системы исчисления за наименьшее количество предметов принимают единицу. В большинстве случаев она является неделимой величиной. Однако при более точных измерениях она также подвергается дроблению. Именно с этим связано появившееся на определенном этапе развития понятие дробного числа. Например, вавилонская система денег (весов) составляла 60 мин, что равнялось 1 талану. В свою очередь 1 мина приравнивалась к 60 шекелям. Именно на основе этого вавилонская математика широко применяла шестидесятеричное дробление. Широко используемые в России дроби пришли к нам от древних греков и индийцев. При этом сами записи идентичны индийским. Незначительное отличие составляет отсутствие у последних дробной черты. Греки сверху прописывали числитель, а снизу знаменатель. Индийский вариант написания дробей получил широкое развитие в Азии и Европе благодаря двум ученым: Мухаммеду Хорезмскому и Леонардо Фибоначчи. Римская система исчисления приравнивала 12 единиц, называемых унциями, к целому (1 асс), соответственно, в основе всех вычислений лежали двенадцатиричные дроби. Вместе с общепринятыми довольно часто применялись и специальные деления. Так, например, астрономами до XVII века применялись так называемые шестидесятиричные дроби, которые были впоследствии вытеснены десятичными (ввел в обиход Симон Стевин - ученый-инженер). В результате дальнейшего прогресса человечества возникла необходимость в еще более значительном расширении числового ряда. Так появились отрицательные, иррациональные и Знакомый всем ноль появился относительно недавно. Он начал применяться при введении в современные системы исчисления отрицательных чисел.

Использование непозиционного алфавита

Что представляет собой такой алфавит? Для данной системы исчисления характерно, что значение цифр не меняется от их расстановки. Непозиционному алфавиту свойственно наличие неограниченного количества элементов. В основе систем, строящихся на базе данного вида алфавита, лежит принцип аддитивности. Другими словами, общее значение числа состоит из суммы всех цифр, которые включает запись. Возникновение непозиционных систем произошло раньше позиционных. В зависимости от способа счета общее значение числа определяется как разность или сумма всех цифр, входящих в состав числа.

Существуют недостатки таких систем. Среди основных следует выделять:

  • введение новых цифр при формировании большого числа;
  • невозможность отразить отрицательные и дробные числа;
  • сложность выполнения арифметических действий.

В истории человечества применялись различные системы исчисления. Наиболее известными считаются: греческая, римская, алфавитная, унарная, древнеегипетская, вавилонская.

Один из наиболее распространенных способов счета

Сохранившаяся до наших дней практически в неизменном виде, является одной из самых известных. При помощи нее обозначаются различные даты, юбилейные в том числе. Также она нашла широкое применение в литературе, науке и других областях жизни. В римской системе исчисления используются всего семь букв каждая из которых соответствует определенному числу: I = 1; V = 5; X = 10; L = 50; С = 100; D = 500; M = 1000.

Возникновение

Само происхождение римских цифр непонятно, история не сохранила точных данных их появления. При этом несомненным является факт: значительное влияние на римскую нумерацию оказала пятеричная система исчисления чисел. Однако в латинском языке отсутствуют упоминания о ней. На этом основании возникла гипотеза о заимствовании древними римлянами своей системы у другого народа (предположительно, у этрусков).

Особенности

Запись всех целых чисел (до 5000) производится при помощи повторения описанных выше цифр. Ключевой особенностью является расположение знаков:

  • сложение происходит при том условии, что большее стоит перед меньшим (XI = 11);
  • вычитание происходит, если меньшая цифра стоит перед большей (IX = 9);
  • один и тот же знак не может стоять подряд более трех раз (например, 90 записывается ХС вместо LXXXX).

Недостатком ее является неудобство выполнения арифметических действий. При этом она просуществовала довольно долго и перестала использоваться в Европе в качестве основной системы исчисления сравнительно недавно - в 16-м веке.

Римская система исчисления не считается абсолютно непозиционной. Связано это с тем, что в ряде случаев происходит вычитание меньшей цифры из большей (например, IX = 9).

Способ счета в Древнем Египте

Третье тысячелетие до нашей эры считается моментом возникновения системы исчисления в Древнем Египте. Суть ее состояла в записи специальными знаками цифр 1, 10, 102, 104, 105, 106, 107. Все остальные числа записывались в виде комбинации данных исходных знаков. При этом существовало ограничение - каждая цифра должна была повторяться не более девяти раз. В основе этого способа счета, который современные ученые называют "непозиционная десятичная система исчисления", лежит простой принцип. Смысл его состоит в том, что написанное число равнялось сумме всех цифр, из которых оно состояло.

Унарный способ счета

Система исчисления, в которой при записи чисел использован один знак - I - называется унарной. Каждое последующее число получается в результате прибавления новой I к предыдущему. При этом количество таких I равно значению записанного при помощи них числа.

Восьмеричная система исчисления

Это позиционный способ счета, в основании которого лежит число 8. Для отображения чисел используется цифровой ряд от 0 до 7. Широкое применение данная система получила в производстве и использовании цифровых устройств. Основным ее преимуществом является легкий перевод чисел. Их можно преобразовать в и обратно. Данные манипуляции осуществляются благодаря замене чисел. Из восьмиричной системы они переводятся в двоичные триплеты (например, 28 = 0102, 68 = 1102). Данный способ счета был распространен в области компьютерного производства и программирования.

Шестнадцатиричная система исчисления

В последнее время в компьютерной сфере данный способ счета используется достаточно активно. В корне данной системы лежит основание - 16. Система исчисления, базирующаяся на нем, предполагает использование цифр от 0 до 9 и ряда букв латинского алфавита (от А до F), которые применяются для обозначения интервала от 1010 до 1510. Данный способ счета, как уже было отмечено, используется при производстве программного обеспечения и документации, связанной с компьютерами и их составляющими. Основано это на свойствах современного компьютера, основной единицей которого является 8-битная память. Ее удобно преобразовывать и записывать при помощи двух шестнадцатиричных цифр. Основоположником такого процесса явилась система IBM/360. Документация для нее была впервые переведена этим способом. Стандарт Юникода предусматривает запись любого символа в шестнадцатиричном виде с использованием не менее 4 цифр.

Способы записи

Математическое оформление способа счета основывается на указании его в нижнем индексе в десятичной системе. Пример, число 1444 записывается в виде 144410. Языки программирования для записи шестнадцатиричных систем имеют разные синтаксисы:


Заключение

Как изучаются Информатика - основная дисциплина, в рамках которой осуществляется накопление данных, процесс их оформления в удобный для потребления вид. С применением особых инструментов происходит оформление и перевод всей доступной информации в язык программирования. Он в дальнейшем используется при создании программного обеспечения и компьютерной документации. Изучая различные системы исчисления, информатика предполагает использование, как уже сказано было выше, разных инструментов. Многие из них способствуют осуществлению быстрого перевода чисел. Одним из таких "инструментов" является таблица систем исчисления. Пользоваться ею достаточно удобно. При помощи данных таблиц можно, например, быстро перевести число из шестнадцатиричной системы в двоичную, не обладая при этом специальными научными знаниями. Сегодня возможность осуществлять цифровые преобразования есть практически у каждого заинтересованного в этом человека, поскольку необходимые инструменты предлагаются пользователям на открытых ресурсах. Кроме того, существуют и программы онлайн-перевода. Это существенно упрощает задачу по преобразованию чисел и сокращает время операций.

1. Порядковый счет в различных системах счисления.

В современной жизни мы используем позиционные системы счисления, то есть системы, в которых число, обозначаемое цифрой, зависит от положения цифры в записи числа. Поэтому в дальнейшем мы будем говорить только о них, опуская термин «позиционные».

Для того чтобы научиться переводить числа из одной системы в другую, поймем, как происходит последовательная запись чисел на примере десятичной системы.

Поскольку у нас десятичная система счисления, мы имеем 10 символов (цифр) для построения чисел. Начинаем порядковый счет: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Цифры закончились. Мы увеличиваем разрядность числа и обнуляем младший разряд: 10. Затем опять увеличиваем младший разряд, пока не закончатся все цифры: 11, 12, 13, 14, 15, 16, 17, 18, 19. Увеличиваем старший разряд на 1 и обнуляем младший: 20. Когда мы используем все цифры для обоих разрядов (получим число 99), опять увеличиваем разрядность числа и обнуляем имеющиеся разряды: 100. И так далее.

Попробуем сделать то же самое в 2-ной, 3-ной и 5-ной системах (введем обозначение для 2-ной системы, для 3-ной и т.д.):

0 0 0 0
1 1 1 1
2 10 2 2
3 11 10 3
4 100 11 4
5 101 12 10
6 110 20 11
7 111 21 12
8 1000 22 13
9 1001 100 14
10 1010 101 20
11 1011 102 21
12 1100 110 22
13 1101 111 23
14 1110 112 24
15 1111 120 30

Если система счисления имеет основание больше 10, то нам придется вводить дополнительные символы, принято вводить буквы латинского алфавита. Например, для 12-ричной системы кроме десяти цифр нам понадобятся две буквы ( и ):

0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10
11
12 10
13 11
14 12
15 13

2.Перевод из десятичной системы счисления в любую другую.

Чтобы перевести целое положительное десятичное число в систему счисления с другим основанием, нужно это число разделить на основание. Полученное частное снова разделить на основание, и дальше до тех пор, пока частное не окажется меньше основания. В результате записать в одну строку последнее частное и все остатки, начиная с последнего.

Пример 1. Переведем десятичное число 46 в двоичную систему счисления.

Пример 2. Переведем десятичное число 672 в восьмеричную систему счисления.

Пример 3. Переведем десятичное число 934 в шестнадцатеричную систему счисления.

3. Перевод из любой системы счисления в десятичную.

Для того, чтобы научиться переводить числа из любой другой системы в десятичную, проанализируем привычную нам запись десятичного числа.
Например, десятичное число 325 – это 5 единиц, 2 десятка и 3 сотни, т.е.

Точно так же обстоит дело и в других системах счисления, только умножать будем не на 10, 100 и пр., а на степени основания системы счисления. Для примера возьмем число 1201 в троичной системе счисления. Пронумеруем разряды справа налево начиная с нуля и представим наше число как сумму произведений цифры на тройку в степени разряда числа:

Это и есть десятичная запись нашего числа, т.е.

Пример 4. Переведем в десятичную систему счисления восьмеричное число 511.

Пример 5. Переведем в десятичную систему счисления шестнадцатеричное число 1151.

4. Перевод из двоичной системы в систему с основанием «степень двойки» (4, 8, 16 и т.д.).

Для преобразования двоичного числа в число с основанием «степень двойки» необходимо двоичную последовательность разбить на группы по количеству цифр равному степени справа налево и каждую группу заменить соответствующей цифрой новой системы счисления.

Например, Переведем двоичное 1100001111010110 число в восьмеричную систему. Для этого разобьем его на группы по 3 символа начиная справа (т.к. ), а затем воспользуемся таблицей соответствия и заменим каждую группу на новую цифру:

Таблицу соответствия мы научились строить в п.1.

0 0
1 1
10 2
11 3
100 4
101 5
110 6
111 7

Т.е.

Пример 6. Переведем двоичное 1100001111010110 число в шестнадцатеричную систему.

0 0
1 1
10 2
11 3
100 4
101 5
110 6
111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

5.Перевод из системы с основанием «степень двойки» (4, 8, 16 и т.д.) в двоичную.

Этот перевод аналогичен предыдущему, выполненному в обратную сторону: каждую цифру мы заменяем группой цифр в двоичной системе из таблицы соответствия.

Пример 7. Переведем шестнадцатеричное число С3A6 в двоичную систему счисления.

Для этого каждую цифру числа заменим группой из 4 цифр (т.к. ) из таблицы соответствия, дополнив при необходимости группу нулями вначале:



mob_info